Retour d'expérience sur 3 ans d'observation via tous les tubes "EAA" du marché

Th. Hanon-Degroote - RCE 2024 ttf@ttfonweb.be www.ttfonweb.be

Qui suis-je?

-52 ans 1^{er} télescope

-46 ans 1^{er} Ordinateur

-20 ans 1er Club astro

-4 ans 1^{er} EAA

Aujourd'hui 6eme EAA

4 Fédérations

10 clubs

5 CA

2 Associations

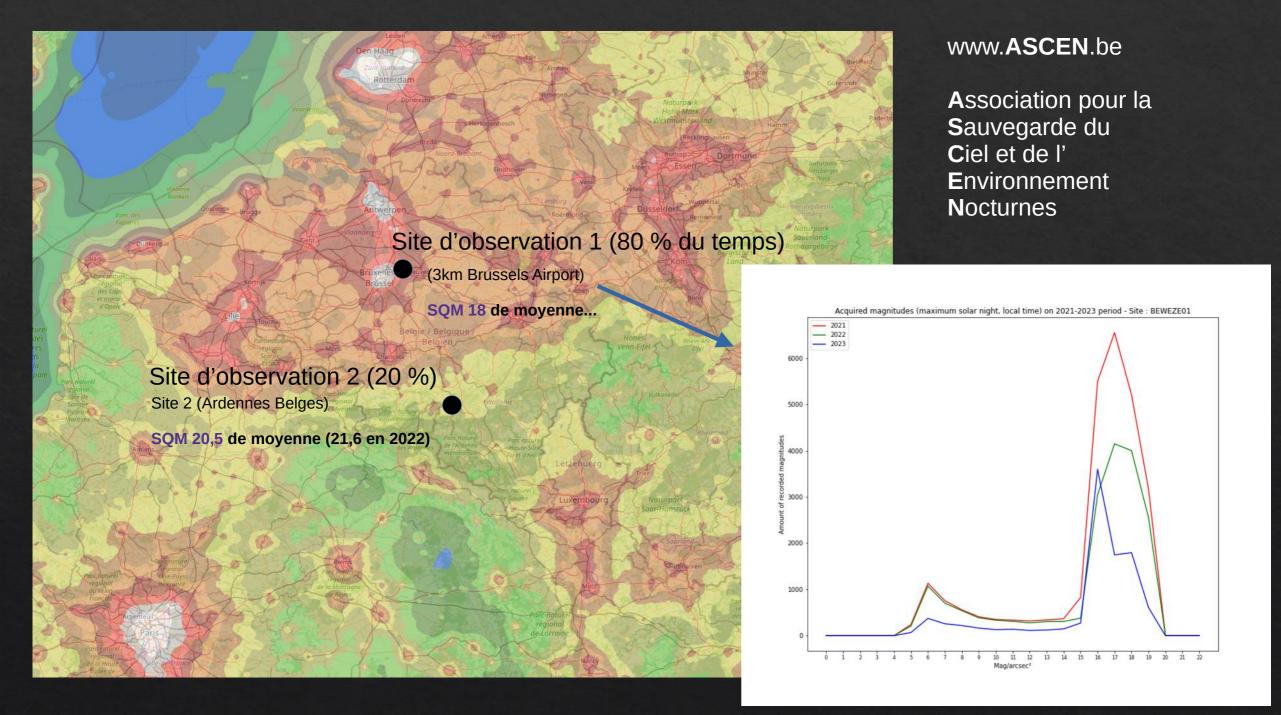
Conférencier

Animateur

Observateur

Science / Projets

Cours


24h/jour = **un problème**....

Le **bon** télescope, c'est

Celui qu'on utilise....

Et pas celui qu'on vous dit d'acheter!

Sommaire

- Caractéristiques communes
- Interrogation et marché
- Avantages / inconvénients par modèle utilisé
- Ce qu'on le lit pas souvent
- Conclusion

"Electronically Assisted Astronomy (EAA) is the use of an analog or digital image capturing device in place of an eyepiece at the telescope."

Lu sur Cloudynights - 2019

Un outil qui ouvre l'astronomie à tous, sans restrictions au niveau de la personne, de son âge ou de ses capacités...

Ma définition...

Le triomphe de l'astropantoufle sans observatoire!

Ma réalité...

VA: Une évolution somme toute logique...

- Goto (Meade)

ETX-LS (2009) - Sky Field Recog + GoTo

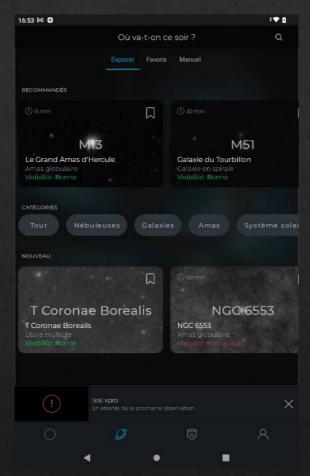
StarSense Tech (Celestron) - Sky Field Recog + GoTo

Smartphone computing capacity

StarSense Tech - GoTo « manuel » ou AR

AutoAlign, Capture, CCD, **APN**

AutoAlign + Stack + Sky recog + Control


All-in-One software - Find, follow, capture

Vaonis Stellina (2016) - « All in one » concept

« Remote control »

Vaonis Unistellar ZWO

En 8 ans... Les tubes « automatiques » :

Montures:

- Mise en station automatique
- Catalogue (visuel) des objets
- Altazimutal
 - légèreté, simplicité, suivi faible
 - ok pour pose courte (max 30 sec)
- F et F/D faibles
 - champ large
 - luminosité et but précis...

- Integration, légèreté
- Solidité, Fiabilité
- Autonomie
- Stabilité logicielle
- Suivi logiciel
- Mise au point
- Calibration (Miroir)

Captures:

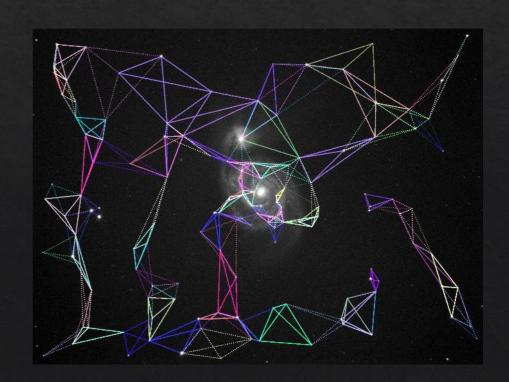
- Dérotation
- Flat, dark, offset
- Traitement automatique « optimisé »
- Mosaïque
- Pré-optimisation
- Accès aux images

- Contrôle à distance
- Accès aux paramètres de capture ?
- Optimisations possibles
- Traitement, scripts et automatisation
 - Limites de traitement : « Pub » et réalités

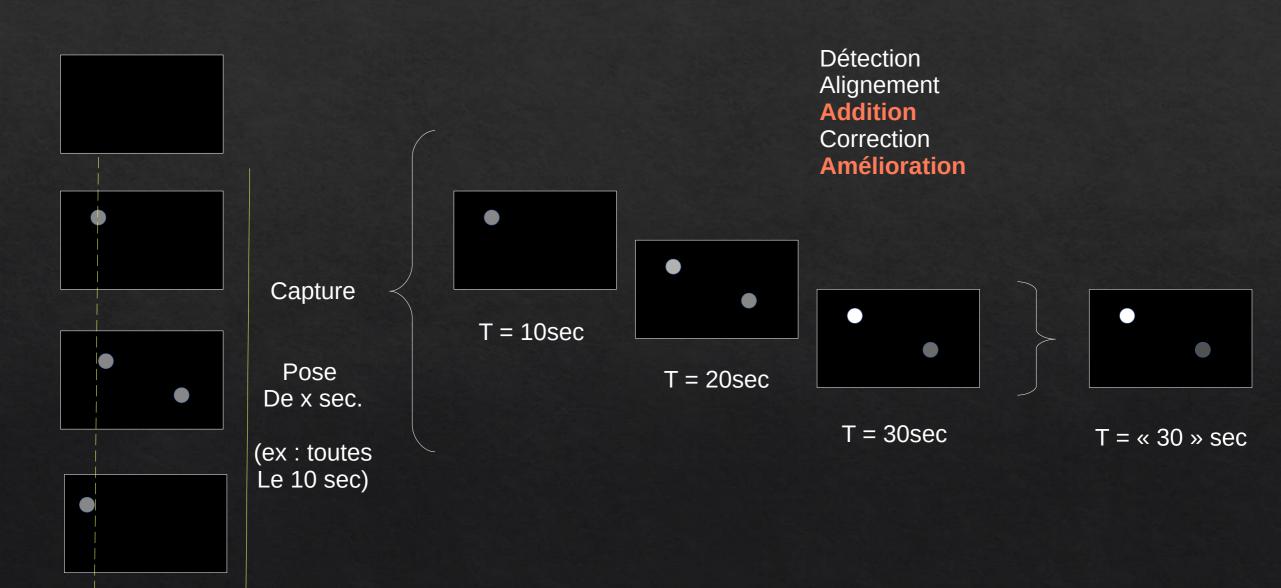
« Sky Recognition », « Plate solving » et « Mise en station automatique »

« Blind plate solvers » : Astrometry.net

1 image, pas de localisation, pas de données additionnelles puissance de calcul, (très) large catalogue, - rapide

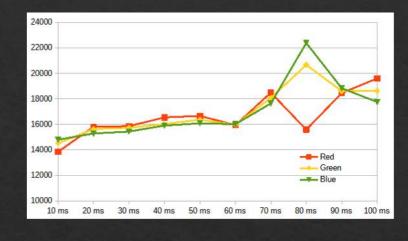

« Local plate-solvers »:

1 à n « captures », données : date, localisation, champ moins gourmand, catalogue réduit, + rapide


Capturer => isoler étoiles => comparer au catalogue => calcul vision et position => mise en station

Il suffit d'un morceau visible de ciel avec des étoiles ! Guidage initial manuel sur Soleil et Lune...

=> De 1 à 5 minutes, sans intervention humaine...



« Live Stacking » ou « Empilage dynamique »

« Live Stacking on M42 »

t=3min

« Altazimutal » = « suivre un objet », mais pas « suivre un objet dans sa rotation apparente »

Usage typiquement belge... Invisible à l'oeil nu, à cause de la PL locale...

C/2023 A3 SeeStar (JPEG smartphone)

C/2023 A3 Vespera (Mosaic mode, JPEG smartphone)

Mon interrogation:

Est-ce que les EAA peuvent me suffire dans toutes mes activités astro ?

Observation « publique »

- Découverte
- Initiation
- Cours (Solaire / Nuit)

Observation « météo ok »

- Météo ok rare
- PL élevée
- Légèreté
- Evenèment astro (Nova, comète, etc...)
- Astrophoto plaisir...
- Voyage

Observation « régulière »

- Petits corps
- Impact lunaires
- Variables
- Visuel / Radio
- Champ large

Le marché... Evolue rapidement (+1 tous les 6 mois...)!

Vaonis

D=50, F=200/250 2 (f4) 8 (f5), 12 (f5) Mpix

> Mosaic CovalENS

Unistellar

D=85, F=320 3,4 Mpix 4,1 Mpix

D=112, F=450 4 Mpix

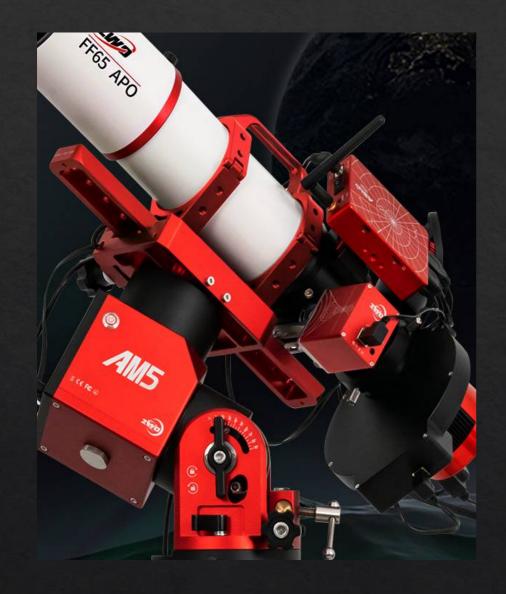
D=112, F=450 F/D 4 1.2 Mpix 4 Mpix

ZWO

D=50. F=250, F/D 5 2 Mpix

AZ/GTI AM3/5

Celestron



D=152, F=335 F/D 2,2 6 Mpix (IMX178)

D=24/35, F=100/150, F/D 4 2 (8) Mpix (2x2) 2 (8) Mpix (2x2)

Le prix ne fait pas tout....



~ 6000 eur (MM)

~ 5 000 eur

Pas le même niveau...!

AM5 / FF65 / 533MC (1,85 "/pix) - Gilmour Dickson

Evscope 2 (1,33"/pix) - Russ Brasser

Que peut-on faire avec ?

Capture via EAA

Image « View »

Pour post-traitement
« basique »
Projeter sur grand écran
« live »
Présentation / Découverte
Public/privé

« Pour faire joli »

Image « Stack(n) »

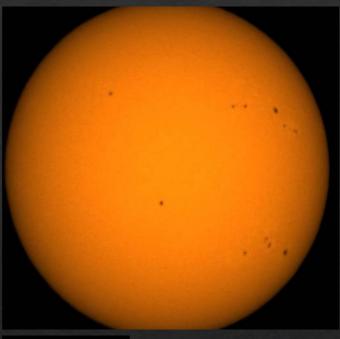
Pour post-traitement « moyen»

Astrophoto de base => Dérotation!

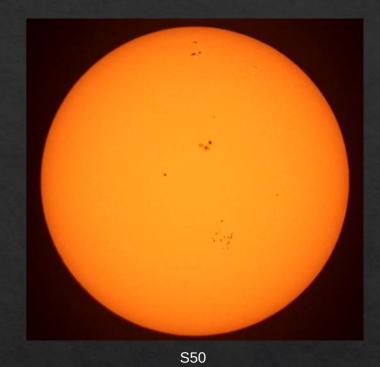
Image « RAW »

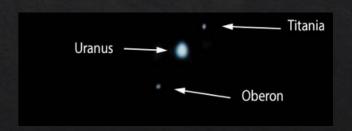
Pour post-traitement « lourd »

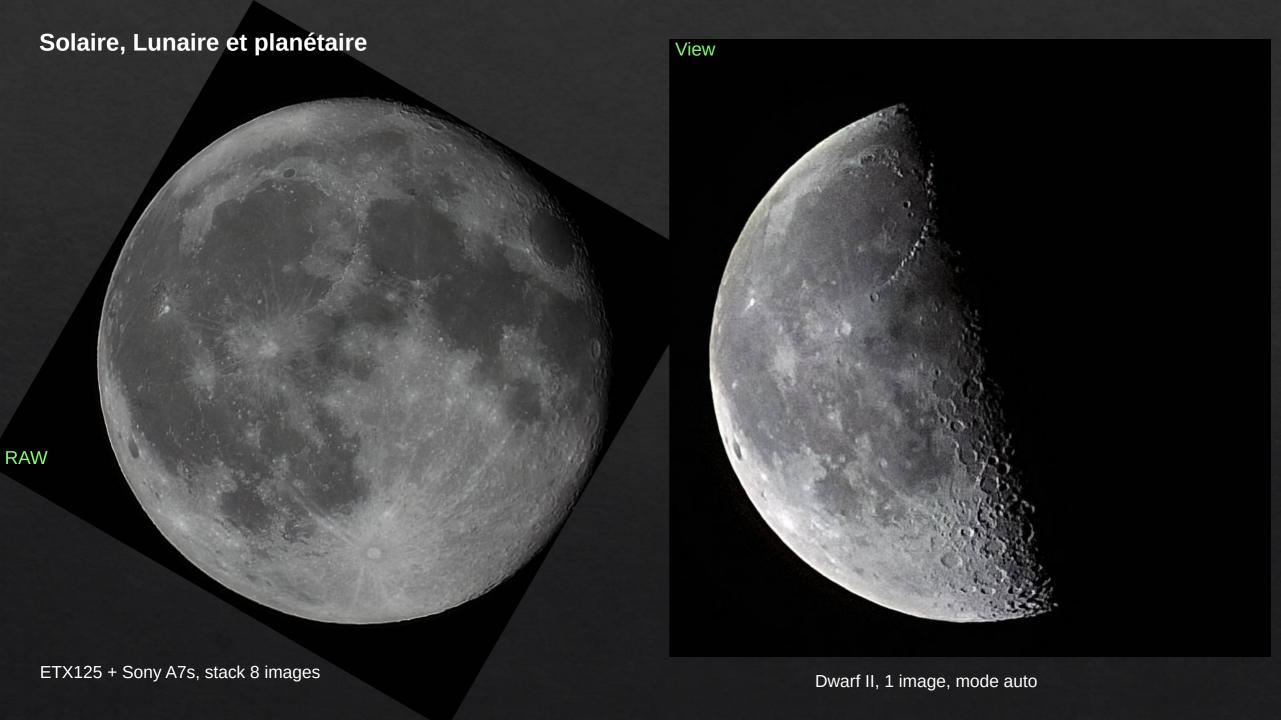
Science / Défi


« Faire au mieux »

« Que peut-on en sortir ? »


Solaire, Lunaire et planétaire





Solaire, Lunaire et planétaire

Equinox 2 Equinox 1

Unistellar : Equinox 1 & 2, D=112, F=450, 1,2 / 4 Mpix, 2,9 µ

~ 2800 objets, 600 000 images, 1,6 TB)

EQ1 & EQ2

- Usage
 - Public (« event ») => stack le +rapide
 - Champ réduit
 - Modes
 - « science »
 - « accentué »
 - Filtres : que Sol (cher), accès images
- Traitement
 - image finale
 - images independantes, dark
 - images astronomiques
- Capture
 - Catalogue petits objets
 - 0,01 4 sec
 - période moyenne (1-2 h possible)

Mise en station
Orientation automatique
PL Haute
Images brutes
Modes (planète, science)
Résolution
Rapidité stack
Visualisation
MAP
« ViVid » mode (2024 EQ2 : png)

Suivi
Stack (qualité)
Calibration
Extraction images
WIFI
APP Android & IOS

Port USB inutile... Récupération images Protocole de contrôle Planification

- Images
 - PNG = immediat
 Accès : smartphone / tablette
 Usage = montrer...
 - TIFF,FITS = mémoire télescope
 - Accès : upload/download wifi (std)
 V 3.* : « file transfert » expérimental
 Usage = traiter
 - USB A+C : inexploitable données
- Memoire : 64 GB
- Image: 6MB (stack, light, dark)
- 10000 images(4 sec = 11h capture)

Accès aux RAW : indispensable !

Filtres: oui / non?

Idéal pour « public » Le + rapide Le plus sensible Le + grand diamètre

EQ2

- stack auto
- std mode
- PL high
- 48 min

EQ 1 : Sans un accès aux RAW, l'usage est très limité...

EQ2 : new « Vivid » algo pour le View, du bricolage...

M81 - EQ2 48 min, PL High Siril / Pix / Affinity

Equinox / Evscope 1

M13 - Equinox 1

- Sky SQM 18, PL HIGH
- 1,2 Mpix
- 15 min (4 sec/img)
- Siril Stack
- Pix
- Affinity

Equinox *l* **Evscope** 2

M13 - Equinox 2

- Sky SQM 18, PL HIGH
- 4 Mpix
- 21 min / 315 img (4 sec/img)
- Siril Stack
- Pix
- Affinity

Image Enhancement VIVID (Oct 2024, V3.5): PL High

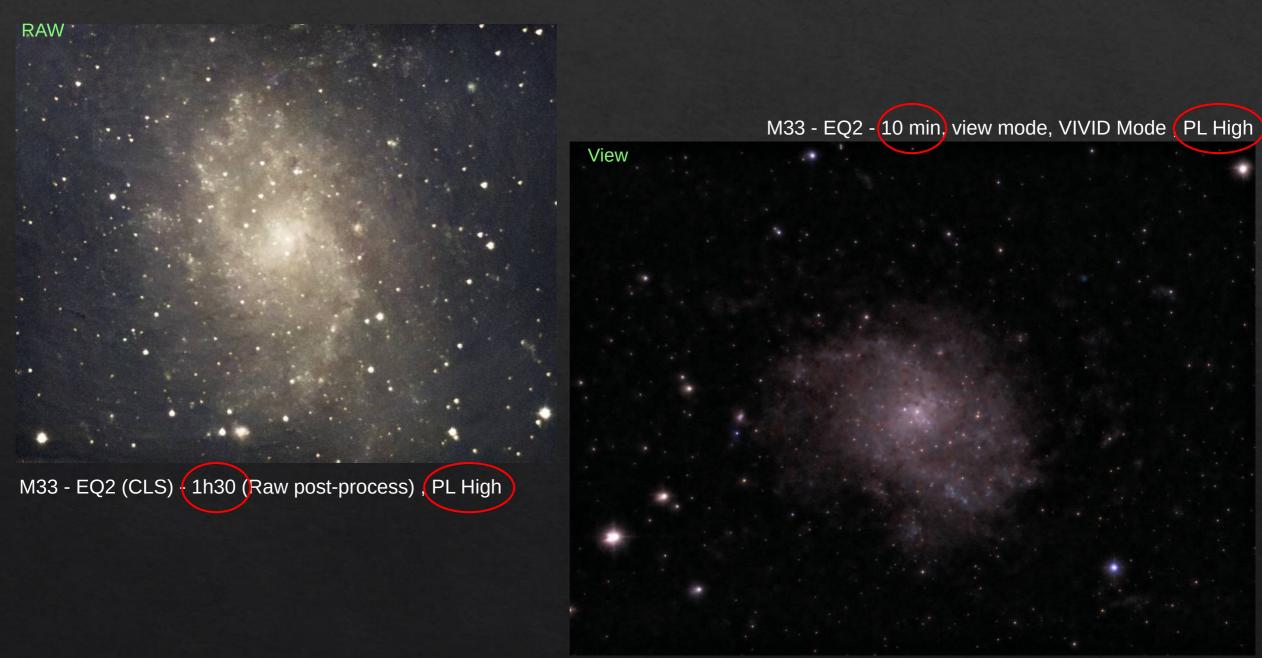
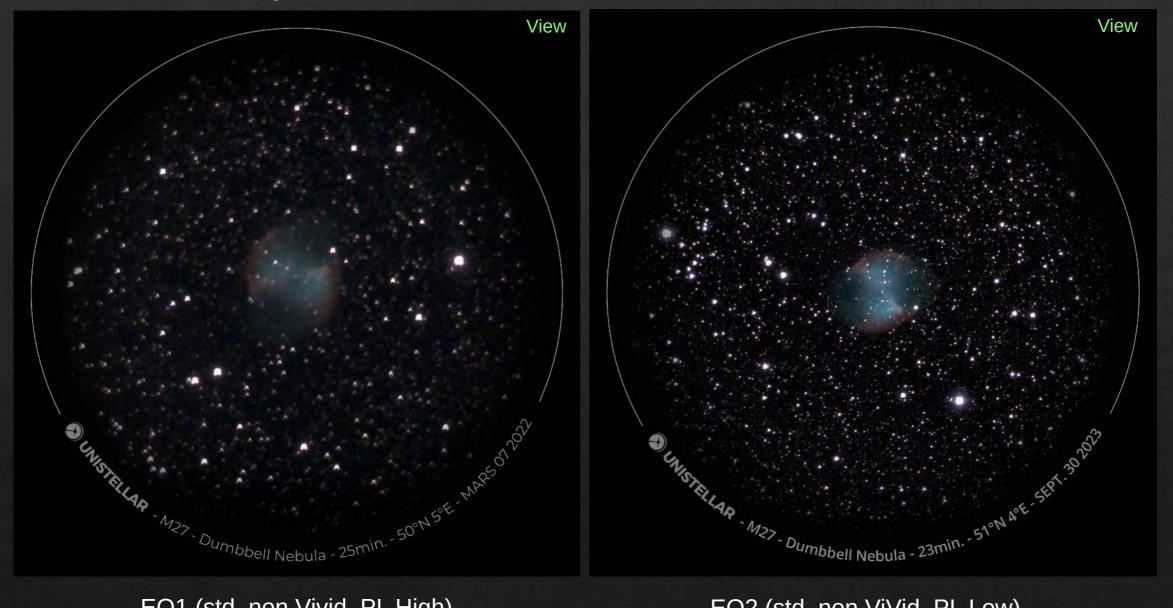


Image Enhancement (Oct 2024, V3.5): PL HIGH

2 Min : Basculement de mode...

Amas de la Chouette - EQ2 - 1 min 56, PL High


Amas de la Chouette - EQ2 - 2min30 (Vivid active), PL High

EQ2 : « Vivid » au-dessus de 3 min, le désactiver ?

EQ1 (std, non Vivid, PL High)

EQ2 (std, non ViVid, PL Low)

Celestron C8 ASI 2600 AM5 1h PL Low

M. Werny / Astronamur

png, Vivid mode, View (20 min) No Filter PL-High

png, Vivid mode, View (20 min) Full 1x L-Pro PL-High

Fits,
Addition Stacks (20 min)
Crop (derotation)
1x L-Pro
1x Sans filtre
PL High

Vaonis Vespera : 2 Mpix, D=50, F=200, 2 Mpix, 2,9μ, 2,99 arcsec/pix

~ 382 objets, 66 000 images, 0,5 TB)

- Perso / Public privé, pas de preview
- Large champ
- Mode « Mosaïque »
- filtre Sol / PL cher, mais existant...
- Interrupteur, accès image
- Traitement
 - uniquement image finale
 - image décorative...
- Capture
 - planification
 - 10, 20, 30 sec
 - période moyenne (1-2 h possible)
 - adéquation champ + capteur
 - anti-buée

Orientation automatique Modes (solaire) Résolution Champ uniforme Visualisation MAP Filtres (PL, Solaire) APP iOs Mosaïque Anti-Buée

- JPEG = immediat Accès : smartphone / tablette Usage = montrer...
- TIFF, FITS = mémoire télescope
 Accès : FTP
 Usage = traiter
- « USB like » : inexploitable
- Mémoire : 10 GB
- Image = variable... (stack)

Suivi PL Moyenne WIFI APP Android Images brutes Planification

Interrupteur

Récupération images Protocole de contrôle Images de contrôle

Usage: PL ou pas?

Idéal pour « privé» Mise au point auto Résolution Mosaique

Rosette Nebula

3 h Site PL / filtre PL actif

- 1 image Stacked (Mosaic mode)
- Pix + GrapXpert + Affinity

Stack

Vespera I s : 2,99 arsec/pix

DWARFLab: Dwarf II

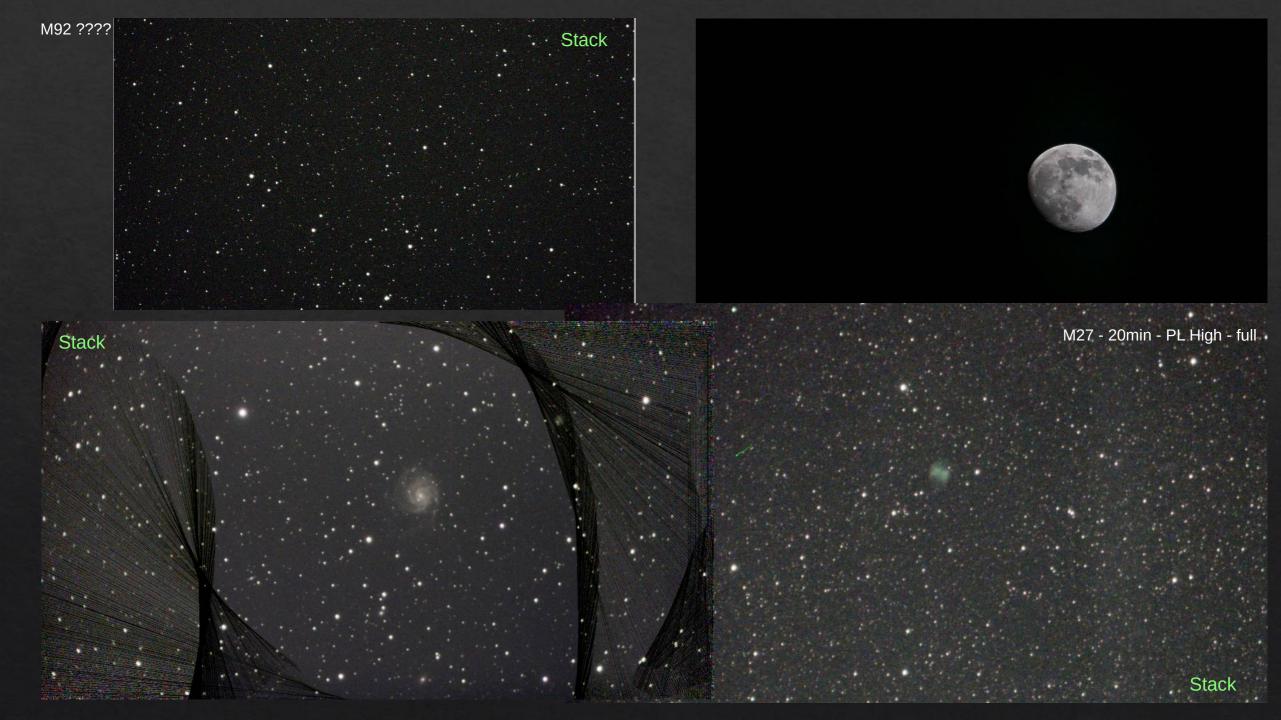
Dwarf II

Orientation automatique
Modes (solaire, photo, telephoto)
Champ uniforme
Visualisation
MAP
Filtres (PL, Solaire)
APP iOs & Android
Catalogue
Images brutes
Récupération images

Résolution RTFM! Images de contrôle PL Basse Erreur de pointage!

Logique des boutons Logique des fonctions Images de contrôle

Usage


- Public => stack (50 % ratés)
- Ultra Portable (1,5 kg !!!)...
- Champ réduit (vertical)
- Filtre PL + Solaire (fourni)
- Modes
 - visuel (normal / tele)
 - stack
- Traitement
 - image finale
 - images independantes
- Capture
 - Catalogue visuel
 - 10, 20, 30 sec
 - 50 % pertes (PL)
 - période moyenne (1-2 h)

- Images
- JPEG = immediat Accès : smartphone / tablette Usage = montrer...
- TIFF, FITS = mémoire télescope Accès : USB C (MTP) Usage = traiter
- WIFI : STA mode... (LAN,FTP)
- Retraitement:
- Mémoire : 64 GB
- Image = 4MB (light) 12MB (stack)

API : utilisable ou pas ? Equatorial utilisable ?

De poche (1,5 kg)
Permanent voiture
Photo normale & astro
Mise au point auto
Filtres
Tracking

DWARFLab: Dwarf III

Dwarf III

PASENCORERECT

ZWO: SeeStar 50, D=50, F=250, 2 Mpix, 2,9μ, 2,39 arcsec/pix

~ 165 objets, 32000 images, 0,2 TB)

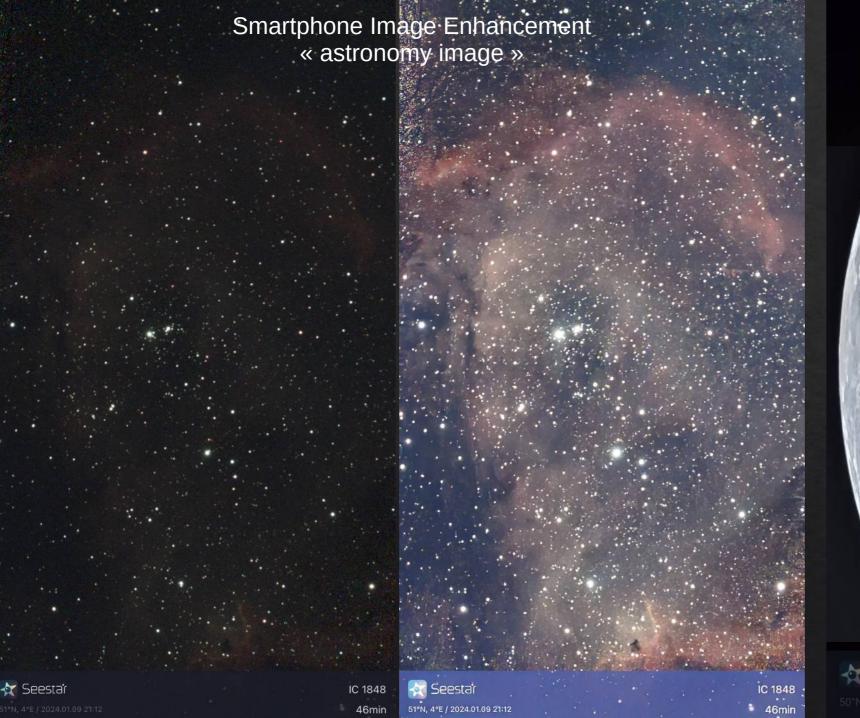
S50

- Usage
 - Public => stack (50 % ratés)
 - Ultra Portable (sac cabine avion)...
 - Champ réduit (vertical)
 - Filtre PL + Solaire (fourni)
 - Modes
 - visuel
 - stack
- Traitement
 - image finale
 - images independantes
- Capture
 - Catalogue visuel
 - 10, 20, 30 sec
 - 20-50 % pertes (PL)
 - période moyenne (1-2 h)

Orientation automatique Modes (solaire, photo) Résolution Champ uniforme Visualisation MAP PL Haute Filtres (PL, Solaire) APP iOs & Android Catalogue PL Map

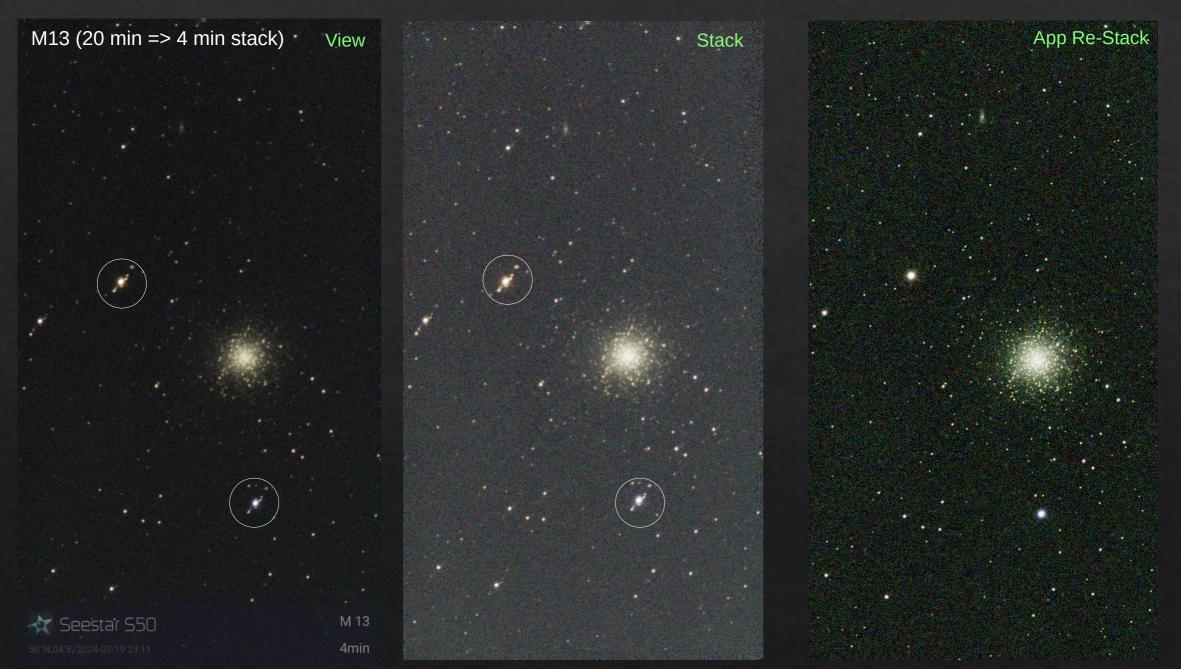
- JPEG = immediat
 Accès : smartphone / tablette
 Usage = montrer...
- TIFF, FITS = mémoire télescope Accès : USB C Usage = traiter
- WIFI: STA mode... (LAN,FTP)
- Retraitement : via APP
- Mémoire : 64 GB
- Image = 4MB (light) 12MB (stack)

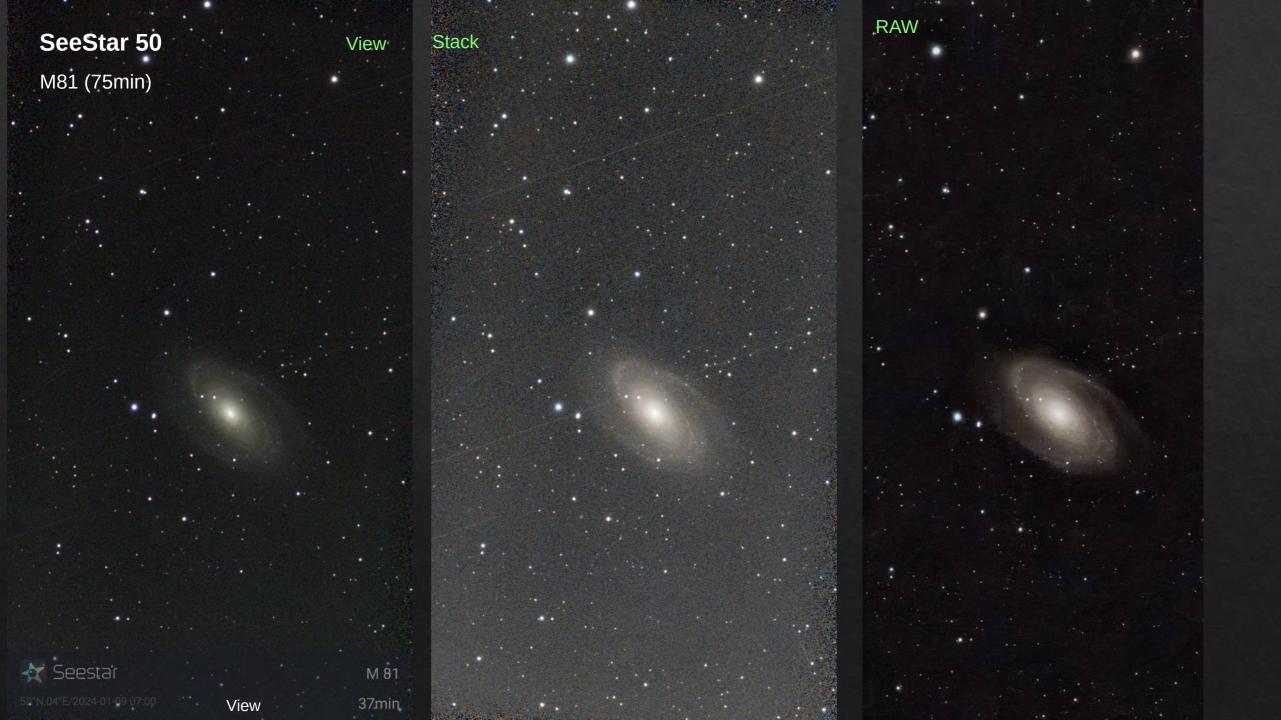
Images brutes
Planification
Récupération images


Protocole de contrôle Planification Synchro nébuleuses faibles Stack lent...

Images de contrôle

API : utilisable ou pas ?


Idéal pour « voyage»
Mise au point auto
Filtres
Résolution
Accès Images
Traitement APP



Smartphone Image Enhancement « more details »

SeeStar 50

VA et... Filtres : SeeStar 50

Mosaic Mode

New SeeStar?

Mosaic Mode (Oct 2024)

Vaonis Vespera Pro : 12 Mpix, D=50, F=250, 12 Mpix, 2μ, 1,65 arcsec/pix

~ 50 objets, 8000 images, 0,5 TB)

Orientation automatique Modes (solaire) Résolution Visualisation MAP Filtres (PL, Solaire) APP iOs Anti-Buée

Suivi
PL Faible
Champ uniforme
WIFI
APP Android
Sensibilité
Images brutes
Planification
Lenteur générale

Interrupteur Port USB C ignoré

Récupération images PL Moyenne et Haute Protocole de contrôle

Usage: PL ou pas?

Pour public avisé Mise au point auto Résolution Mosaique

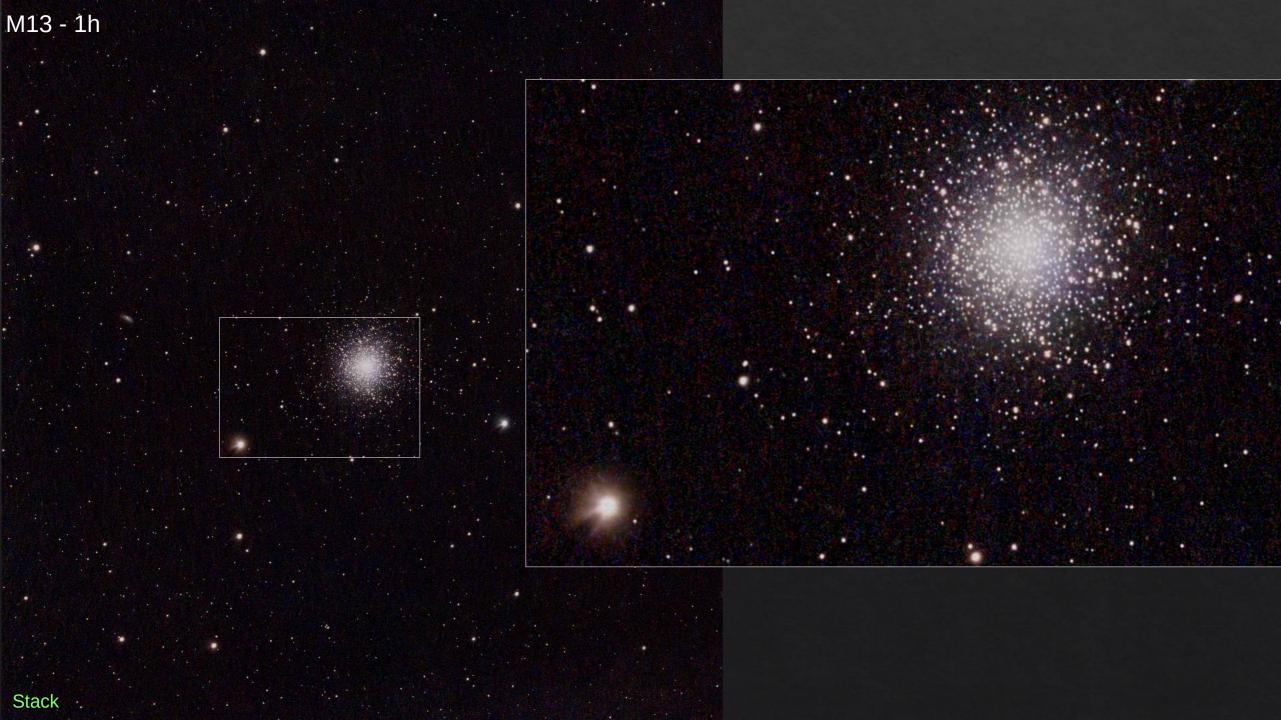
- Public privé
- Large champ
- Mode « Mosaïque »
- filtre Sol / PL cher, mais existant...
- Interrupteur, accès image

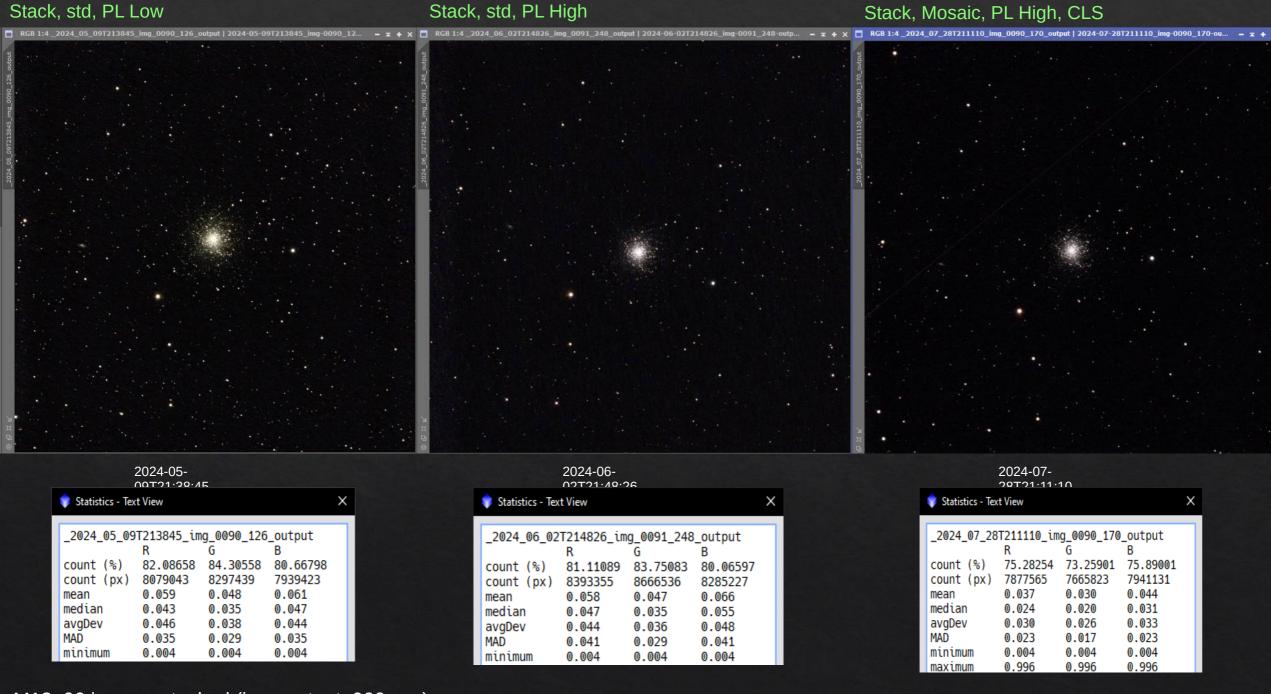
Traitement

- uniquement image finale
- image décorative...

Capture

- planification
- 10, 20, 30 sec
- période moyenne (1-2 h possible)
- adéquation champ + capteur : mitigé


- JPEG = immediat
 Accès : smartphone / tablette
 Usage = montrer...
- Processeur : insuffissant (50%)
- TIFF, FITS = mémoire télescope Accès : FTP Usage = traiter
- USB C : inexploitable
- Mémoire : 256 GB
- Image = variable... (stack)
- « PRO » : pas convaincant à ce stade....



Solaire et planétaire

Vespera Pro

M13, 90 images stacked (jpeg output, 900 sec)

M13, 545 images (2 capture sessions : 1h30, PL High, No filter, Siril Script + post process, 164 GB)

A l'utilisation...

Hardware : évolution et problèmes

Marque	Modèle	< 2020	2020	2021	2022	2023	2024	2025
Unistellar	EQ1		х	ok	ok (CLS)	ok (CLS)	ok (CLS)	ok (CLS)?
	EQ1				Nok/SAV OK	ok	ok	ok?
	EQ1			x	ok	ok	nok (batterie)	
	EQ2				x	ok	ok (L-PRO)	ok (L-PRO) ?
Vaonis	Vespera I			x	ok (switch)	ok (switch)	Nok/SAV NOK	ok (switch)
	Vespera Pro						Х	ok?
	Hestia						NOK	ièces détachée
ZWO	SeeStar				Х	ok	ok (SAV OK)	ok ?
	ASI AIR Pro			x	ok	ok	ok	ok?
	ASI120MC		х	ok	ok	ok	ok	ok?
	ASI185MC			x	ok	ok	ok	ok?
	ASI178MC					x	ok	ok?
	ASI178MM				x	ok	ok	ok?
DwarfLab	Dwarf II				x	ok	ok	ok?
	Dwarf III						x ?	
Celestron	NexStar		х	ok (WIFI)	ok (WIFI)	Nok (Batt)	ok (WIFI+220)	ok (WIFI+220)
	StarSense		x	ok	ok ´	Nok	ok	` ok
SkyWatcher	EQ6	2007	ok	ok	ok	ok	ok	ok
	AZ/GTI		ok	ok	ok	ok	ok	ok
	Adventurer Mini	2019	ok	ok	ok	ok	ok	ok
		0051						
Vixen	Sphynx	2004	ok	ok	ok	ok	ok	ok
Meade	ETX125	1998	ok	ok	ok	LCD	LCD	LCD

SeeStar	Vespera	VesperaPro	Equinox1
1221	1496	793	4282
872	1496	760	1
10	10	10	3,971754
203,50	249,33	132,17	283,45
29/07/24 22:41	29/07/24 23:11	29/07/24 23:02	29/07/24 20:46
30/07/24 03:32	30/07/24 03:26	30/07/24 03:27	30/07/24 01:29
04:51:00	04:15:00	04:25:00	04:43:14
291	255	265	283
70	98	50	100
1000-1020	1020-1000	2525,2526	1304×0976
			125 5x0. 76
		_	43
•	-		2 43
•	•		450
			112
	4	5	
	9	2	29
2	41110	12	1
5.56	7.23	19.74	10.16
	1221 872 10 203,50 29/07/24 22:41 30/07/24 03:32 04:51:00 291	1221 1496 872 1496 10 10 203,50 249,33 29/07/24 22:41 29/07/24 23:11 30/07/24 03:32 30/07/24 03:26 04:51:00 04:15:00 291 255 70 98 1080x1920 1920x1080 1080x1920 1920x1080 1080x1920 1920x1080 3,95 3,95 0,6 0,4 250 200 50 50	1221 1496 793 872 1496 760 10 10 10 203,50 249,33 132,17 29/07/24 22:41 29/07/24 23:11 29/07/24 23:02 30/07/24 03:32 30/07/24 03:26 30/07/24 03:27 04:51:00 04:15:00 04:25:00 291 255 265 70 98 50 1080x1920 1920x1080 3536x3536 1080x1920 1920x1080 3536x3536 3,95 3,95 23,8 0,6 0,4 71,5 250 200 250 50 50 50 5 50 50

Capture: ED80 / ASI178

9/0

Efficacité de capture


SeeStar : 70 % Vespera Pro : 50 %

=> il faudra poser 2h pour avoir 1h effective

VA et...Comparer M1, condition PL haute, ciel dégagé et identique, 1h de capture

Les images « brutes » (FITS)

Unistellar

```
T / conforms to FITS standard
                                                                                                                                                                       T / conforms to FITS standard
                                         16 / array data type
2 / number of array dimensions
                                                                                                                                                                      16 / array data type
2 / number of array dimensions
MAXIS1 -
                                                                                                                              NAXIS1 -
MAXIS2 -
                                                                                                                              NAXIS2 -
                                                                                                                             BUNIT - 'ADU '
ORIGIN - 'Unistellar'
ORIGIN - 'Unistellar'
                                            / institution responsible for creating this file
                                                                                                                                                                         / institution responsible for creating this file
         - '2024-03-09713:56:04.164' / date of file creation
                                                                                                                              DATE - '2024-01-10T15:56:39.407' / date of file creation
TIMSYER - 0.2 / systematic error on time, in TIMEUNIT TELESCOF- '' / name of telescope
                                                                                                                                                                   0.2 / systematic error on time, in TIMEUNIT
/ name of telescope
                                            / name of instrument
/ Serial number of the telescope
INSTRUME- 'IMX347 '
SERIALNB- 'xxxxxx
                                                                                                                              INSTRUME- 'IMX347 '
SERIALNB- '******
                                                                                                                                                                       / name of instrument
/ Serial number of the telescope
DATE-088- '2024-03-07218:11:37.071' / date of the start of the obs
DATE-AVG- '2024-03-07218:11:33.071' / date of the mid of the obs
DATE-EMP- '2024-03-07218:11:43.071' / date of the mid of the obs
                                                                                                                             DATE-088- '2014-01-08730:07:14.785' / date of the start of the obs
DATE-AVG- '2014-01-08730:07:18.785' / date of the mid of the obs
DATE-EMP- '2014-01-08730:07:18.785' / date of the mid of the obs
MJD-0BS - 60376.79973461805 / modified Julian date of the start obs
MJD-MID - 60376.79975776607 / modified Julian date of the mid obs
                                                                                                                             MJD-OBS - 60317.83836533548 / modified Julian date of the start obs
MJD-MID - 60317.83838848397 / modified Julian date of the mid obs
MUTHOUT 6037.7977/8607 / Moderated values date of the And dos

MUTHOUT 60376.7987801845 / modified Julian date of the end dos

EXPTIM - 3.99997 / exposure time, in TIMEUNIT

TIMEUNIT- ' time unit

LATITUDE- 50.000000 / latitude in degrees north of observing site
                                                                                                                             MJD-RND - 50317.83841163199 / modified Julian date of the end obe
EXPTIME - 3.999997 / exposure time, in TIMEUNIT
TIMEUNIT 's / time unit
                                                                                                                              GAIN - 0.1298063187045237 / gain in e-/ADU
                                                                                                                             ORATION - 1.17900918/109323) / gain in 4=/Auc

ORATION - 18.3 / gain in decibel used in the eVscope

ORATION - 18.3 / gain in decibel used in the eVscope

ORATION - 18.3 / gain in decibel used in the eVscope

STACKED - 5
                               4.000000 / longitude in degrees east of observing site
                                     104 / altitude in meters of observing site
            e- 104 / altitude in maters of observing site
- 0.1298063187045337 / gain in e-/ADD
- 18.3 / gain in decibel used in the eVscope
P- 10 / sensor temperature in Celsius
CAINDR -
OBSMODE - 'EnhancedVision'
PURPOSE - 'StackSum'
                                           / observation mode of the frame
/ usage of the frame
                                                                                                                             FOVDEC -
FOVEREF -
                                                                                                                                                             38.18244 / Field of view Declination in deg (J2000.0)
1044 / X reference pixel for FOVRA, FOVDEC
                                9 / number of image in recording sequence
47.74072 / Field of view Right Ascension in deg (J2000.0)
6.57952 / Field of view Declination in deg (J2000.0)
                                                                                                                             FOVYREF -
BAYERPAT- 'RGGB
                                                                                                                                                                     768 / Y reference pixel for FOVRA, FOVDEC
                                                                                                                                                                           / Bayer pattern
FOUNTEF -
                                     1024 / X reference pixel for FOVRA, FOVDEC 768 / Y reference pixel for FOVRA, FOVDEC
                                                                                                                              BZERO -
                                                                                                                                                                  32768
 SOFTVER - '3.0-8213£790'
                                 0' / Software Versions
38912.0 / Black level in ADU in 16 bits
-0.00408 / Average Acceleration X in m.s^-2
                                                                                                                             <sn>_yyyy-mm-ddTHH-MM-SS.mmm_ENHANCEDVISION
<sn>_yyyy-mm-ddTHH-MM-SS.mmm_DEFENSE
BIASLVL -
                                                                                                                             <sn>_yyyy-mm-ddTHH-MM-SS.mmm_OCCULTATION
                                 -8.68472 / Average Acceleration Y in m.s^-2
5.04047 / Average Acceleration Z in m.s^-2
                                                                                                                             SII-yyyy-imm-dd I HH-IMM-SS.mmim_OCCUL (AIION

SIN-yyyy-imm-dd THH-IMM-SS.mmim_Science_Comet (...)

SIN-yyyy-imm-dd THH-IMM-SS.mmim_DarkframeMean
ACCLHANX-
                                 -0.00778 / Maximum Acceleration X in m.s^-2
                 -8.68713999999999 / Maximum Acceleration Y in m.s^-
                                                                                                                                                                                                                                       <model>-yyyymmdd-HHMMSS.png
                                 5.04467 / Maximum Acceleration Z in m.g^-2
                 29.35828971862793 / Telescope altitude in degrees
241.3208312988281 / Telescope arimuth in degrees
TELALT -
TELAZ -
                                                                                                                                        <sn>_yyyy-mm-ddTHH-MM-SS mmm_STACKSUM.json
<sn>_yyyy-mm-ddTHH-MM-SS.mmm_DARKFRAMEMEAN.fits
<sn>_yyyy-mm-ddTHH-MM-SS.mmm_DARKFRAMEMEAN.json
BAYERPAT- 'RGGB
                                             / Bayer pattern
BZERO -
                                     32768
                                                                                                                                                   <sn>_yyyy-mm-ddTHH-MM-SS.mmm_STACKINPUT.fits
                                            T / file does conform to FITS standard
                                                                                                                           SIMPLE =
                                                                                                                                                                        T / file does conform to FITS standard
                                                                                                                                                                                                                                                                                                          ENDSIMPLE -
BITPIX -
NAXIS =
 BITPIX =
                                            16 / number of bits per data pixel
                                                                                                                                                                       16 / number of bits per data pixel
 NAXIS =
                                            2 / number of data axes
                                                                                                                            NAXIS =
                                                                                                                                                                       2 / number of data axes
                                        3536 / length of data axis 1
3536 / length of data axis 2
 NAXIS1 =
                                                                                                                           NAXIS1 =
                                                                                                                                                                   1920 / length of data axis 1
1080 / length of data axis 2
 NAXIS2 =
                                                                                                                            NAXIS2 =
                                           T / FITS dataset may contain extensions
 EXTEND =
                                                                                                                             EXTEND =
                                                                                                                                                                             / FITS dataset may contain extensions
                                                                                                                           BZERO =
                                                                                                                                                                                                                                                                                                          BSCALE = 1 / default scaling factor
DATE-OBS- '2024-08-25T23:00:55.653' / Time end of exposure
                                                                                                                            DATE-085 '2022-10-09T18:11:29 UTC' / Capture time

EXPOSURE= 10000 / [ms] Total Exposure Time

FOCAL = 200 / [mm] Focal length
 DATE-OBS= '2024-08-05T20:30:26' / Capture time
EXPOSURE= 10. / [s] Total Exposure Time
TEMF = 22.1 / [C] Temperature
 FOCAL =
                                                                                                                           INSTRUME= 'vespera-xxxxx'
BAYERPAT= 'GBRG '
                                        250 / [mm] Focal length
                                                                                                                                                                      / STELLINA by Vacnis
 INSTRUME= 'vesperapro-xxxxxxx' / VESPERA PRO by Vaonis
                                                                                                                                                                    / Bayer pattern
201 / [0.1dB] Sensor gain
                                         / Bayer pattern
150 / [0.1dB] Sensor gain
 GAIN =
                                                                                                                            OFFSET =
                                                                                                                                                                     240 / Camera brightness parameter
                                            F / gain HCG mode
                                                                                                                           PIXS2 =
                                                                                                                                                                     2.9 / [um] Pixel size
 OFFSET =
PIXSZ =
                                          240 / Camera brightness parameter
                                           2. / [um] Pixel size
                                                                                                                                                                      62 / White balance (red)
 WB_B
                                                                                                                            COMMENT STELLINA by Vacnis
WB_R =
FILTER = 'CLS
COMMENT VESPERA PRO by Vaonis
                                                                             Sub-dir naming
                                                                                                                                                                          Sub-dir naming
                                                                                      yyyy-mm-dd_HH-MM-SS_observation <object>
                                                                                                                                                                                   expert-mode
                                                                                                 <nn>-images-initial
                                                                                                                                                                                               image-brutes
                              coherence between models 
tracked object name
                                                                                                          img-<nnnn>.tif
                                                                                                                                                                                    yyyy-mm-dd HH-MM-SS moon
                                                                                                                                                                                              <nn>-images-initial
yyy-mm-dd HH-MM-SS (nnn).jpeq
                                                                                       yyyy-mm-dd_HH-MM-SS_plan_<plan name>
                                                                                                                                                                          <android>\pictures\Singularity Album
                                                                                                                    img-<nnnn>-output.jpg
```

yyyy-mm-dd_HH-MM-SS_plan_sun-mode

<nn>-images(-nn)

yyyy-mm-dd HH-MM-SS (nnn).jpeg

SeeStar

```
32763 / offset data samp to that of unsigned short
1 / default scaling factor
10 / Capture software
10 / Subframe X position in binned piwels
20 / Subframe X position in binned piwels
25 / Focal length of telescope in nm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     250 / Focal length of telescope in mm
1 / Camese X Sin.
1 / Camese X Sin.
2 / Camese X Sin.
2 / Camese X Sin.
1 / Camese X Sin.
2 / Camese X Sin.
2 / Scott Y Sin.
3 / Scott Y Sin.
3 / Scott Y Sin.
3 / Scott Y Sin.
4 / Sin.
5 / Sin.
6 / Sin.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FIACOUTH- 69 / Brook feases and DEPOINT AND ACCOUNTS AND 
                                                                                                                                                                                                                                                                                                                                         / name or catalog number of object being imaged
        Stacked <nbr > <object> <ttt.tt>s <filter> yyyymmdd-HHMMSS.fit
Light_<nbr/>bry_<object>_<ttt.tt>s_<filter>_yyyymmdd-HHMMSS.fitLight_<nbr/><object>_<ttt.tt>s_<filter>_yyyymmdd-HHMMSS.jpgLight_<nbr/><object>_<ttt.tt>s_<filter>_yyyymmdd-HHMMSS.thn.jpg
```

DWARF_DARK

DWARF DARK yyyymmddHHMMSSNNN

DWARF_RAW_<object>_EXP_<exp>_GAIN_<gain>_YYYY-MM-DD-HH-MM-SS-NNN

16 / number of bits per data pixel 2 / number of data axes 3860 / length of data axis 1 2150 / length of data axis 2 I / FIIS dataset may contain extensions

#T23:00:55.633' / Time and of exposure
15. / [9] Exposure Time
10. / Stan
10.

Dwarf II

Les images « brutes »

Traitement /darks /lights /lights /lights /lights EQ **ZWO** VA DW Equinox Dwarf Vespera ZWO

Science Voyage Observation Suivi

www.ttfonweb.be (pour 2025)

ZWO_Lights_only_Preprocessing.ssf

Vespera_Lights_only_Preprocessing.ssf

Unistellar_Lights&Darks_only_Preprocessing.ssf

Dwarf_Lights_only_Preprocessing.ssf

Ce que l'on ne lit pas souvent...

Problèmes généraux

Qualité des APP

Un « mauvais update » et l'ensemble devient inutile (aucun réemploi) => obsolescence ? (sur tous les points...)

Récupération d'images

- Les ingénieurs français ferait bien de copier...

 Les chinois !
- Un USB <u>totalement fonctionnel</u>, à ce prix de matériel, est <u>un minimum</u>!

Souvent

- « push to market »

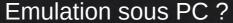
- ex : Vaonis Hestia

: inexploitable sous Android « Low cost »

: <u>oblige</u> à des smartphones <u>couteux</u>...

PAS de « version control » chez <u>aucun</u>!

=> si problème, totalement bloqué!


Systématiquement

- Plus stable et mieux testées sous iOS
- Meilleures connexions réseau sous iOS
- Comportement différent sous iOS
- Fichiers mieux gérés et accessibles sous Android
- Mieux identifiables

sous Android

- Solution moins chère

sous Android

=> Possible, mais pas dans tous les cas/ versions

API?

=> Que ZWO (non officiel) et Dwarf (faible)

Fonctions: Bon à savoir

Pointer la Lune...

Exige généralement les étoiles... Sauf SeeStar

Mode de capture...

SeeStar : le seul qui propose zoom (1,2,4x), photo et video (RAW mode)

Pointer les planètes...

Il faut du diamètre... Seul Unistellar s'en sort avec des « détails »

Photométrie...

Equinox : réponse assez linéaire... Mais pose courte (signal faible).

: mode « science » et calibration préalable (split RGB)

: filtre « rouge » ou « vert » (Johnson), selon le cas...

=> ASTAP, SIRIL, ImageJ: ok

=> HOPS : en expérimentation...

Vaonis : que avec le PRO (en théorie), et un bon ciel...

SeeStar : ajouter un filtre est complexe... Mieux vaut découper l'image en plans couleur séparés, puis évaluer la qualité de la capture.

Dwarf : On pourrait ajouter un filtre format standard...

Mais la capture est complexe à gérer.

Bugs & Good to Known...

Vespera: Exige un ciel noir... (même si étoiles visibles, le plus long plate solving de tous)... Si l'interrupteur fonctionne et n'a pas vidé la batterie!

Equinox : Une cible à 2° de l'horizon = plantage systématique du télescope...
Reboot!

Vespera APP : « Limite » de sauvetage de 200 MB... Même si on dispose 128 GB ! Et la récupération est... D'une lenteur affligeante !

DWARF : La séquence de capture est tout, sauf intuitive... Bien vérifier avant de laisser « toutner » !

DWARF: Exige une « autorisation » (après démarrage du télescope et connexion avec l'APP) pour pouvoir accéder la mémoire et transférer...

Equinox : Ne se charge pas sous 10°! Donc, durée de capture réduite au froid! (batterie externe, ou pas connectée...)

Vespera Mosaic: Un vrai « plus » avec petit capteur (2 Mpix), *Dubitatif avec plus gros*... (puissance CPU => 4x le temps...)

SeeStar: Stack performance ne dépasse pas 70 %...

SeeStar: Suivi parfois surprenant...

SeeStar: Sur les objets « moins connus », goto rate souvent! Pas d'entrée avec coordonnées...

DWARF : Rien ne fonctionne sans connexion au télescope (ni même l'accès à l'album personnel)

Conclusion

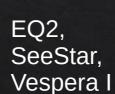
Matériel + APP	Unistellar	Vaonis	Vaonis	ZWO	DwarfLab
	EQ1/EQ2	Vespera I	Vespera Pro	SeeStar 50	Dwarf II
Adapté PL	Toutes	PL moyenne	PL basse	Toutes	PL Moyenne
Usage	Montrer un objet du ciel en 5 min	Montrer de belles images	Montrer de belles images	Canif suisse	Canif carte crédit
Objets	Tous	Large	Large	Large	Très large
Qualité immédiate	Moyenne	Bonne	Bonne	Bonne	Faible
Qualité Post-Traitement	Bonne	Très Bonne	Bonne	Bonne	Moyenne
Filtres	Préférable	CLS (si PL Haute)	Trop cher	Inclus	Inclus
Accès aux images	PNG, Fits, TIFF	Jpeg,Fits,TIFF	Jpeg,Fits,TIFF	Jpeg, Fits	Jpeg, Fits
Facilité d'accès aux brutes	Long, mais automatique (1)	Back to 90's	Back to 90's	Parfait	Correct
Post-Traitement	Selon le cas	Selon le cas	Selon le cas	Selon le cas	Obligatoire
Fits quality	Bonne	Limitée	Limitée	Bonne	Minimale
Science	Possible	Pas possible	??? (2)	Limité	Difficile

⁽¹⁾ Tant que Unistellar le permet... L'évolution planifiée (APP) => on passe de « long » à « 90's »

⁽²⁾ Quand un vrai mode « pro » sera disponible, on testera...

Observation « publique »

- Découverte
- Initiation
- Cours (Solaire / Nuit)



EQ1, EQ2, SeeStar

Observation « météo ok »

- Météo ok rare...
- PL élevée
- Légèreté
- Evenèment astro (Nova, etc...)
- Astrophoto plaisir...
- Voyage

Observation « régulière »

- Petits corps
- Impact lunaires
- Variables
- Visuel / Radio
- Champ large

EQ1, EQ2, Dwarf II, Vespera Pro, SeeStar

By Plane....

SeeStar & APN

= 9 kg

Bagage à main

Amusez-vous!

Merci pour votre attention...