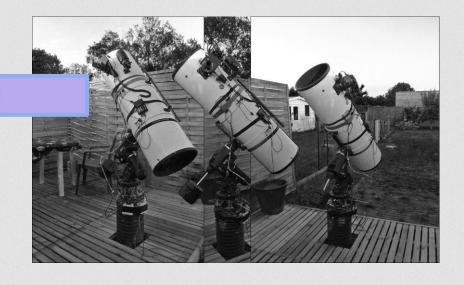

Par Stephane Gonzales

ASTROPHOTOGRAPHIE POSES COURTES

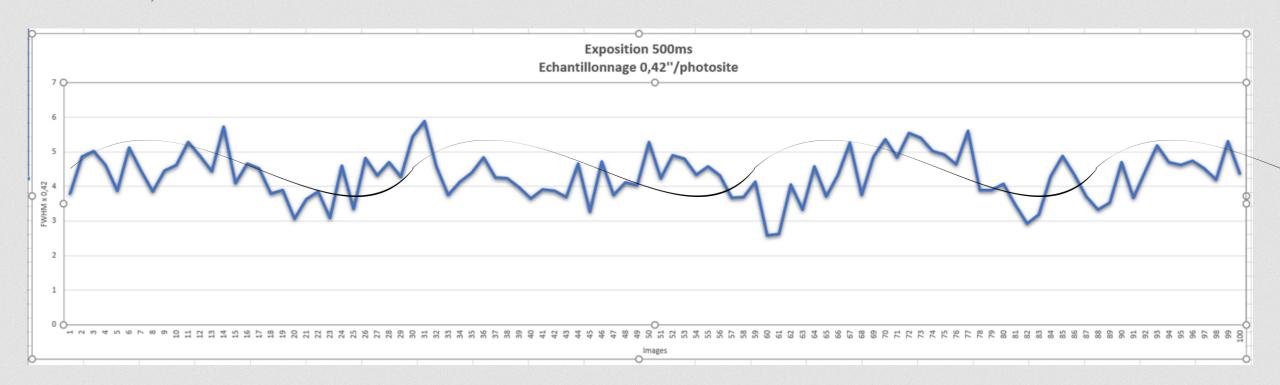
Définition des poses courtes.



NGC 6210 (62500x500ms)

Domaine d'application avec un TN 300MM F4-F20

	Durée d'exposition	Frontière	Domaine atteint pour la résolution	domaine
Poses longues	>15s	Technique des poses longues	Limité par le seeing/matériels	Tout les objets du ciel profond
Poses moyennes	5s-15s	Autoguidage. Mise en station simplifiée.	La simplification de la capture	Tout les objets avec la contrainte de la magnitude de surface
Poses courtes / Lucky guiding	500ms-5s	EP monture	On tend vers un échantillonnage optimale pour une approche HR	Galaxies/Nébuleuses planétaires /Amas globulaire
Poses courtes	100ms-500ms	Turbulences lentes	On tend vers un échantillonnage serré	Cœur des Nébuleuses Planétaires / Amas Globulaires
Lucky imaging	<10-100ms	Turbulences rapides	Tavelure-limite de diffraction	Planètes/étoiles doubles



L'intérêt des expositions courtes serait d'éliminer :

- 1. La nécessité d'une mise en station sophistiquée,
- 2. Le système d'autoguidage,
- 3. La difficulté d'utiliser un Dobson sur une plate-forme équatoriale,
- 4. L'impact des défauts mécaniques de la monture sur les brutes,
- 5. Les brutes lissées ou déformées par les turbulences atmosphériques.

POSES COURTES 500ms-5s erreur périodique de la monture et autres défauts mécaniques (vent)

POSES COURTES 500ms-5s

Photos avec un système Dobson possible.

La photo avec le système Dobson accumule plusieurs points incompatibles avec le siel profond:

incompatibles avec le ciel profond:

- Mise en station difficile.
- Mécanique avec une EP chaotique.
- Rotation du champ.
- Équilibrage du porte oculaire.
- Sensibilité importante du vent.
- · Durée limitée des captures dûe à la plate-forme.

POSES COURTES 500ms-5s

Photos avec un système Dobson possible.

NGC 6826 imagée avec un télescope de 1m de diamètre avec un rapport F/D résultant de 6. 2500 poses de 200ms avec une caméra ASI224MC. Photo Frédéric Géa.

NGC 7635, pris par un TN de 560mm de 6283x2s pour le fond (FWHM = 1.30") et 1945x2s pour le piqué (FWHM = 1.10") T560 altaz à F 2.9 (réducteur ASA), QHY290M, filtre H-alpha baader 7nm Photo Romain Chauvet.

TEMPS D'EXPOSITION COURT

CAPTURE SIMPLIFIEE

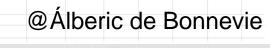
ACCES A LA HAUTE RESOLUTION

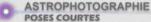
ensibilité F5.6 (mV)

Sensibilité normalisée (mV/μm2)

("Amp glow") Trame de fond ??? ??? 90 fps oleine trame • 10 bits)

223

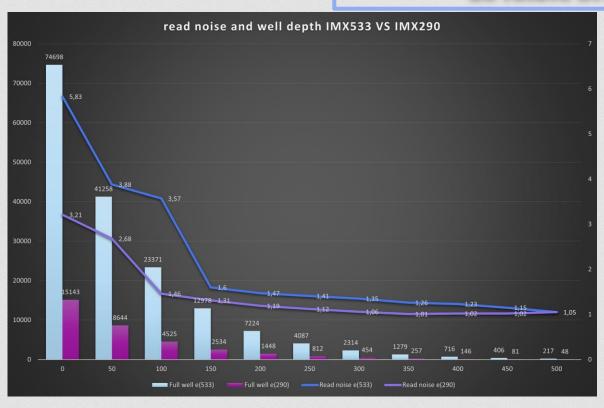


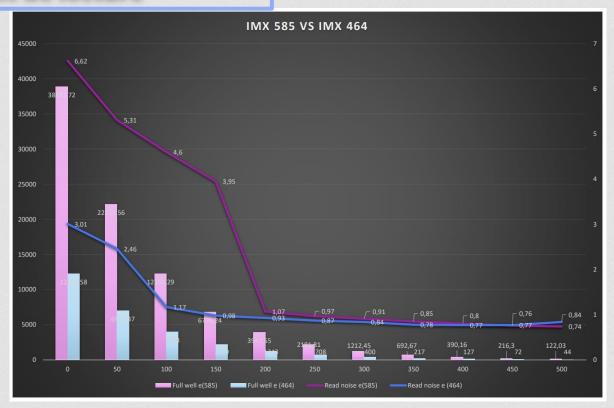

Tableaux des derniers cameras CMOS

Capteur	IMX 224	IMX 185	IMX	174	IMX 178		IMX 290		IMX 385	IMX 294	IMX 492	IMX 183		IMX	(273	
Туре		FSI (Front Side	Illuminated)		BS	SI (Back Side Illu	minated) SI	arvis	FSI	BSI Starvis	BSI Starvis	BSLS	tarvis	FSI (Fr	ont Side inated)	
Shutter	Rolling	Rolling	GI	obal	R	olling	Rolling		Rolling	Rolling	Rolling	Rol	ling	Gle	obal	
Matrice	couleur	Couleur	Couleur	Monochrome	Couleur	Couleur Monochrome		Monochrome	Couleur	Couleur	Monochrome	Couleur	Monochrome	Couleur	Monochrome	
Résolution (pixels)	1280x960 / 1.3 Mp	1944×1224 / 2.4 Mp	1920x12	00 / 2.4 Mp	3072x20	3072x2048 / 6.4 Mp		80 / 2.1 Mp	1945X1097 / 2.13 Mp	3792x2824 / 10.7 Mp	8432×5680 48 Mp/10.7Mp	5472x3648	5472x3648 / 20.5 Mp		1456×1088 / 1.58 mpix	
Taille pixel (μm)	3.75	3.75	5	.86	- 1	2.4		2.9	3.75	4.63	2.315 / 4.63	2.	.4	3.	.45	
Gain électronique max.	60 dB	48 dB	40	dB	5	51 dB		3 dB	60 dB	36 dB	36 dB	60	dB	?	77	
Rendement quantique indicatif (Pic)	estimation 75/80 % (rouge)	estimation 75/80 % (rouge)	74 % (vert)	76 % (vert)	2277	81 % (vert)	227	80 % (vert)	estimation 75/80 % (rouge)	estimation pic : > 75 % (vert)	estimation pic : 85 à 90 % (vert)	73% (vert)	84% pic (vert/bleu)	777	66% (vert)	
Bruit de lecture (e-)	1.5/0.75 e-	3.3/1.4 e-	6/3	1.5 e-	2.4/1.4 e-		3.2/0.9 e-		1.5/0.75 e-	gain>120: 1.7-1.2 e-	gain>120: 1.7-1.2 e-	3.0-1.5 e-		777		
Sensibilité F5.6 (mV)	2350 mV (HCG)	1120 mV	277	1180 mV	425 mV	543 mV	1300 mV	1724 mV	2350 mV (HCG)	1900 mV	277	461 mV	554 mV	1146 mV	1307 mV	
SNR1s (Lux)	0.13	0.20	1	122		0.46		0.23	0.13	0.14	222	777		277		
Sensibilité normalisée (mV/μm2)	167	80	777	34	74	94	155 205		167	89	777	80 96		96	110	
Signal saturation (mV)	1210 mV	1440 mV	85	0 mV	94	15 mV	914 mV		1210 mV	970 mV	222	942	mV	100	1 mV	
Cadence image (images/sec)	150 (10 bits)	108 (10 bits)	164 (10 bits)	60 (pleine t	60 (pleine trame - 10 bits)		e trame - 10 oits)	120 (pleine trame - 10 bits)	30 à 120 (selon format - 10 bits)	30 à 120 (selon format - 10 bits)	25 (pleine trame - 10 bits		276 (8 bits) - 22 bits)		
Electroluminescence ("Amp glow")	Sensible après quelques sec	Très sensible	après quelqu de pose	ues secondes	Asse	Assez limité		z limité	Sensible après quelques sec	Assez limité	Assez limité	Assez limité		?	777	
Trame de fond	très faible	très faible	Importante	, Horizontale	Moyenne	, Horizontale	Très	faible	Très faible	Très faible	Très faible	moyenne		?	777	

Capteur	IMX 296	IMX 307	IMX 327	IMX 390	IMX	420	IMX	IMX 428		421	IMX	437	IMX	429	IMX 422		
Туре	FSI	BSI Starvis	BSI Starvis	222		FSI (Front Side)	FSI (Front Side Illuminated)		FSI (Front Sid	e Illuminated)	FSI (Front Side Illuminated		FSI (Front Side Illuminate		
Shutter	Global	Rolling	Rolling	Rolling	Glo	obal	Gle	obal	Global		Glo	bal	Gle	obal	Global		
Matrice	Monochrome	Couleur	Couleur	Couleur	Couleur	Monochrome	Couleur	Monochrome	Couleur	Monochrome	Couleur	Monochrome	Couleur	Monochrome	Couleur	Monochrom	
Résolution (pixels)	1456×1088 / 1.58 mpix	1920×1080 / 2.1 Mp	1920×1080 / 2.1 Mp	2017x1217 / 2.45 Mp	3216x2208	3216x2208 / 7.1 mpix		3216×2208 / 7.1 mpix		1936x1464 / 2.9 mpix		1936×1464 / 2.9 mpix		1936×1464 / 2.9 mpix		10 / 2.0 mpix	
Taille pixel (microns)	3.45	2.9	2.9	3.0	4	4.5		4.5		4.5		4.5		1.5	4.5		
Gain électronique max.	227	69 dB	71 dB	222	48	48 dB		48 dB		48 dB		48 dB		dB	48 dB		
Rendement quantique indicatif (Pic)	555	277	222	277	environ 65% (vert)	environ 70% (vert)	environ 65% (vert)	environ 70% (vert)	environ 65% (vert)	environ 70% (vert)	environ 65% (vert)	environ 70% (vert)	environ 65% (vert)	environ 70% (vert)	environ 65% (vert)	environ 709 (vert)	
Bruit de lecture (e-)	777	277	222	277	6/2.7 e 1.	4 e- (info FLI)	6/2.7 e 1.4 e- (info FLI)		6/2.7 e 1.4 e- (info FLI)		6/2.7 e 1.4 e- (info FLI)		6/2.7 e 1.4 e- (info FLI		6/2.7 e 1.4 e- (info FLI)		
Sensibilité F5.6 (mV)	1307 mV	1715 mV	2376/2519 mV	1953 mV (HCG)	1971 mV (HCG)	2304 mV (HCG)	1971 mV (HCG)	2304 mV (HCG)	1971 mV (HCG)	2304 mV (HCG)	1971 mV (HCG)	2304 mV (HCG)	1971 mV (HCG)	2304 mV (HCG)	1971 mV (HCG)	2304 mV (HCG)	
SNR1s (Lux)	277	0.24	0.18/0.17	277	71	m		7777		2777		2222		2777		2222	
Sensibilité normalisée (mV/μm2)	110	204	283/299	217	97	114	97	114	97	114	97	114	97	114	97	114	
Signal saturation (mV)	1001 mV	852 mV	852 mV	700 mV	100	1 mV	100	1 mV	1001 mV		1001	l mV	1001 mV		1001 mV		
Cadence image (images/sec)	60 (10 bits)	60 (HD 1080p - 10 bits)	60 (HD 1080p -10 bits)	60 (HD 1080p)		- 170 (10bits) 12 bits)	35 (12 bits	seulement)	409 (8bits) -	231 (12 bits)	409 (8bits) -	231 (12 bits)	96 (12 bits	seulement)	478 (8bits)	- 270 (12 bits)	
Electroluminescence ("Amp glow")	777	222	222	777	?	7?	?	27	777		777		222		277		
Trame de fond	277	222	777	777	?	77	7	??	227		222		227		222		

	Capteur	IMX 430 FSI (Front Side Illuminated)		IMX 425		IMX 432		IMX 392	IMX 490	IMX 347	IMX 485	IMX 462	IMX	533	IMX 482	IMX 585	IMX 662
	Туре			FSI (Front Sid	FSI (Front Side Illuminated)		de Illuminated)	FSI	BSI stacked	BSI Starvis	BSI Starvis	BSI Starvis	BSI S	starvis	BSI Starvis - Quad Bayer	BSI Starvis 2	BSI Starvis 2
	Shutter	Gle	bal	Gle	obal	Global Couleur Monochrome I		Global	Rolling	Rolling	Rolling	Rolling	Ro	lling	Rolling	Rolling	Rolling
	Matrice	Couleur	Monochrome	Couleur	Monochrome			Monochrome	Couleur	Couleur	Couleur	Couleur	Couleur Monochrome		Couleur	Couleur	Couleur
	Résolution (pixels)	4.5		1604×110	0 / 1.8 mpix	1604x1100 / 1.8 mpix 9.0		1920x1200 / 2.3 Mp	2896X1876 / 5.4 Mp 3.0	2688X1520 / 4.1 Mp 2.9	3840X2160 / 8.3 Mp	/ 1920×1080 / 2.1 Mp	3008x3008 / 9 Mp		1920×1080 / 2.1 Mp	1/1.2 / 8.41 Mp	1/2.8 / 2.1 Mp
	Taille pixel (microns)			9	9.0			3.45			2.9	2.9	3	.75	5.8	2.9	2.9
	Gain électronique max.			48 dB		48 dB		48 dB	333	71 dB	72 dB	72 dB	36	dB	72 dB	72 dB	72 dB
	Rendement quantique indicatif (Pic)			environ 65% environ 70% (vert) (vert)		environ 65% environ 70% (vert) (vert)		71% (vert)	222	222	environ 85% 2.2/0.7 e-	environ 90%	envir	on 80%	environ 85%	227	222
	Bruit de lecture (e-)				23 / 4.8 e- (info FLIR); 2.4 e- (info FLI)		23/ 4.8 e- (info FLIR); 2.4 e- (info FLI)		222			1.2/0.7 e-	8	0%	4.5/1.5 e-	222	222
	Sensibilité F5.6 (mV)	1971 mV (HCG)	2304 mV (HCG)	4910 mV	5786 mV	4910 mV	5786 mV	1307 mV	2280 mV (HCG)	2733 mV (HCG)	2349 mV (HCG)	2626 mV / 2784 mV (sHCG)	6210 LSB	7900 Digit	2380 mV / 2532 mV	777	222
	SNR1s (Lux)	??	??	71	777	7	2277		777	0.19	0.18/0.19	0.18	0.13 ???		0.07	0.18	0.17
	Sensibilité normalisée (mV/μm2)	97	114	61	71	61	71	110	253	325	279	312	227	277	71	777	777
	Signal saturation (mV)	100	1 mV	100	1 mV	1001 mV 99 (12 bits seulement) 777		1001 mV	777	960 mV	960 mV	943 mV	16382 LSB	(3895 Digit)	952 mV	777	222
	Cadence image (images/sec)	132 (12 bits	seulement)	662 (8bits) - - 481 (- 565 (10bits) (12 bits)			201 (8bits) - 135 (12 bits)	40 (pleine trame - 10 bits)	90 (pleine trame - 10 bits)	90 (pleine trame - 10 bits)	120 fps (pleine trame - 10 bits)	20 fps (ZW trame	0 ASI - pleine 14 bits)	90 fps (pleine trame - 10	???	777
	Electroluminescence ("Amp glow")	7	??		ans syst. Anti Glow			777	777	777	777	277	Pas d'Amp Glow		777	777	222
	Trame de fond	?	777		faible		777		277	777	227	227	Très	faible	777	777	777
	Capteur	IMX 464															
,	Туре	BSI Starvis															
1	Shutter	Rolling															
	Matrice	Couleur															
1	Résolution (pixels)	2712×1538 / 4.2 Mp															
1	Taille pixel (microns)	2.9															
1	Gain électronique max.	72 dB															
	Rendement quantique indicatif (Pic)	environ 80%															
1)	Bruit de lecture (e-)	2.9 - 0.7 e-															


La Qualité requise d'un capteur pour les poses courtes: Le bruit de lecture.


Plus la valeur est faible, plus la pose peut être courte.

Qualité requise d'un capteur: Le faible bruit de lecture

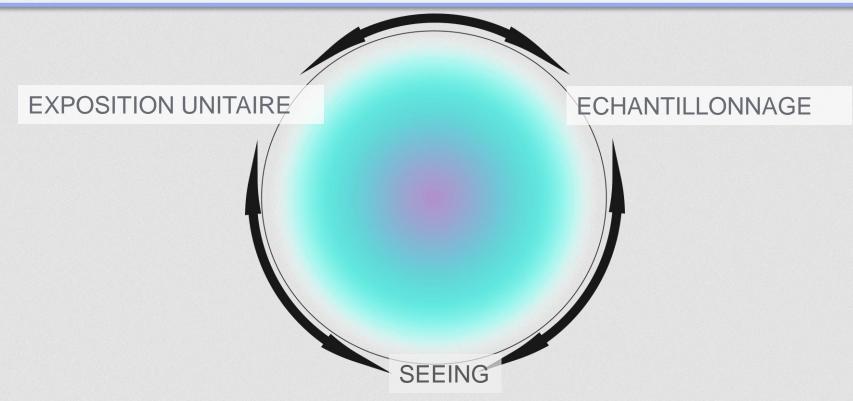
L'objet photographié n'apparait presque pas à l'écran ce n'est pas critique. L'important ici, est le nombre total d'images et le temps d'exposition résultant.

M1

EXPOSITION :BRUTE 1S GAIN 450

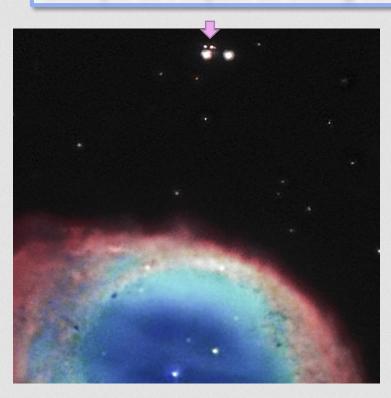
M1 EXPOSITION :5X1S GAIN 450. M1 EXPOSITION :60X1S GAIN 450 M1 EXPOSITION :5300X1S GAIN 450 M1 EXPOSITION :5300X1S GAIN 450 +11000x1s gain 450

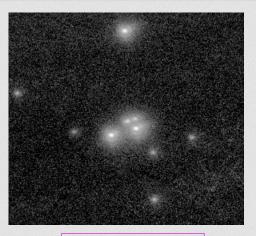
L'acquisition



Une fois ma cible choisie, je dirige mon télescope informatiquement (ou bien manuellement pour les Dobson sur table équatoriale) sur une étoile à proximité de la cible pour parfaire la collimation et choisir l'échantillonnage selon le seeing du moment.

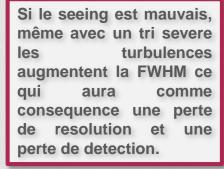
L'acquisition


Plus le seeing est mauvais, plus la capture se fera avec un temps d'exposition court. Si l'objet photographié requiert une exposition plus lente, je diminue d'autant la focale pour élargir mon échantillonnage ; ainsi le seeing impacte moins le résultat.



L'acquisition

Exemple de l'impact du seeing sur un empilement avec les composantes HL9001 (double-triple pres de M57)



500ms FWHM:0,6

SEEING

Echantillonnage: 0,2"/photosite

SEEING

1s FWHM:0,8

500ms FWHM:1,7"

SEEING

ASTROPHOTOGRAPHII
POSES COURTES

L'acquisition

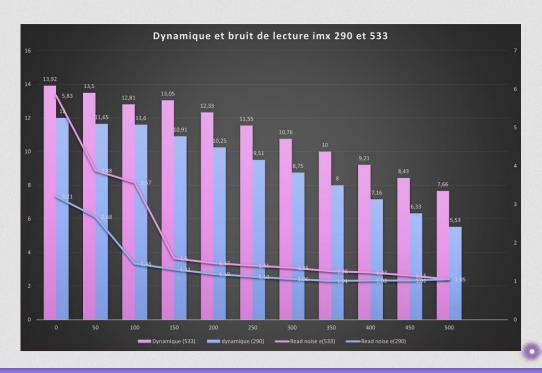
Sur le plan informatique, il me paraît essentiel d'avoir de la mémoire vive (16 Go pour ma part) et un disque dur SSD de grande capacité.

Plus le capteur sera grand plus les données enregistrées seront importantes!

Le crop peux être nécessaire pour certains capteurs.

L'acquisition

Dynamique: 8 bits ou 16 bits?

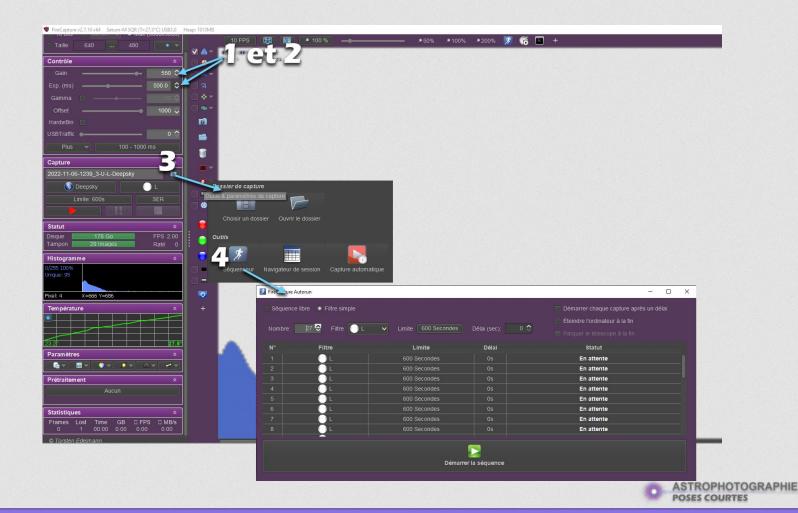

Plus le gain est élevé plus la dynamique baisse mais la somme d'un nombre important de brutes augmente cette dynamique. Toutes les 4 images empilées on augmente la dynamique de 1b.

Il est contre-productif de rester en 16b sauf si la capture est à faible gain et pauvre en image.

MAIS

Aujourd'hui, les nouvelles cameras possèdent une dynamique plus importante dans les gains élevés.

ASTROPHOTOGRAPHII
POSES COURTES


L'acquisition

Toutes mes acquisitions se font au format SER (format de vidéo brute) en mode dématriçage non activé pour les cameras couleurs.

De plus, n'étant jamais à l'abri d'une erreur, d'un bug ou tout autre problème pendant les sessions d'enregistrement, je préfère séquencer mes captures par tranches de 10 minutes, afin de ne pas perdre la session complète.

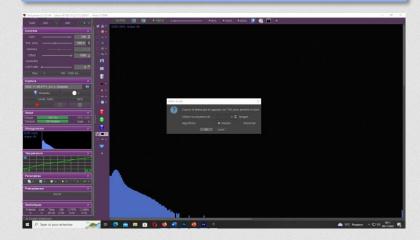
L'acquisition

LA MISE AU POINT.

Après avoir testé divers procédés pour obtenir une mise au point (MAP) plus pointue, j'ai opté pour la diminution de l'exposition, entre 10 et 20 ms, cela permet d'affiner mon étoile de référence à l'écran. Au cours de la séance d'acquisition, les matériaux se contractent plus ou moins en fonction de la température et cela modifie la précision de la MAP effectuée en début de séance : un nouvel ajustement peut alors s'avérer essentiel. L'expérience acquise au fil des séances nous permet d'améliorer cette MAP sans repasser entre 10 et 20 ms.

L'acquisition

NGC 7662. TN300F4, barlow 2.5x: 40000x350ms pour le coeur, 6000x1s pour la couleur



L'acquisition

Astuce:

ne pas utiliser les Darks automatiques de votre logiciel de capture. Des Darks mal adaptés feraient même plus de dégâts sur les captures, qu'une absence de Darks.

Les DOF?

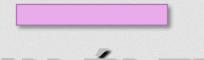
Seuls les DARKS sont necessaires, à faire en debut, milieu et fin de capture si la camera n'est pas refroidie. Le choix d'avoir une caméra refroidie permettrait de simplifier cette partie de la capture. Ce n'est cependant pas primordial mais juste plus confortable.

Je garde les mêmes paramètres d'acquisitions (balance des blancs, expositions, gain, etc.). Un SER d'une grosse centaine images suffit. À noter qu'il n'est pas nécessaire de faire un film d'Offsets : ces derniers étant inclus dans les Darks.

AD Dec 20.335 16.7333 IC 4997 18.5433 -25.1333 IC 4997 18.5433 -25.1333 PK 352-7.1 19.275 -9.05 18.83 20.8333 PK 551-9.1 17.91 -34.3833 PK 356-4.1 17.9767 66.6333 INGC 6543 ID.4133 -18.65 INGC 3242 46.1 IC 2149 23.4317 42.5333 INGC 7662 5.4834 -12.7 IC 418 19.3833 1-51.667 INGC 6790 19.29 -39.6167 INGC 6790 19.29 -39.6167 INGC 68984 25.25283 47.8 PK 100-8.1 18.9267 -32.2667 PK 31-4.1 12.1167 42.2333 INGC 7027 20.2117 19.9833 INGC 7027 20.2117 19.9833 INGC 6886 21.07 -11.3667 INGC 6803 18.7633 -33.35 INGC 7059 INGC 6803 18.7633 -33.35 INGC 7056 18.23 -19.0833 INGC 6567 INGC 709833 -18.2167 INGC 24440 INCC 2444	CONSTELLATION DAUPHIN SAGITTAIRE SAGITTAIRE OPHIUCHUS AIGLE HERCULE SCORPION DRAGON HYDRE TAUREAU ANDROMEDE LIEVRE AIGLE SAGITTAIRE HERCULE CYGNE LEZARD SAGITTAIRE CYGNE LEZARD SAGITTAIRE AIGLE SAGITTAIRE AIGLE SAGITTAIRE AIGLE SAGITTAIRE AIGLE SAGITTAIRE	c'e	e y magnitude 0 11.3 1 12.2 0 11.4 2 12.1 1 11.6 0 12.2 3 8.3 6.1 10 Pentra est fa	2.9 3.9 4.3 4.5 4.6 4.99 5.4 5.49 eut inte	e c'est e.	graphie la mag	18.71 -21.28 18.165 -33.31 20167 b gnitu	PK 7-1.1 75 PK 7-1.1 75 PK 7-1.2 33 PK 12-2 33 PK 12-7 167 PK 3-2 17 PK 3-2 17 PK 3-2 18 PK 12-7 18 PK 3-2 18 PK 12-7 18 PK 3-2 18 PK 3-	coup coup coup coup coup	0.1 0.1 0.1 0.2 0.1 0.2 0.2	0.1 12.4 0.1 11.8 0.2 12.4 0.1 13 0.2 12 0.2 12 0.1 13	7.7 7.7 7.7 7.81 7.85 7.85		ciel pro	ofon	12.7 -29.1333 -9.08333 -9.08333 -21.75 15.9333 17.7833 -24.7 -21.2833 -33.3167	nom IC 4593 NGC 6891 PK 3-6.1 PK 32-6.1 PK 7-1 PK 52-2.2 PK 194+ 2.1 PK 32-1 PK 12-7.1 PK 358-6.1	OPHIUCHUS SAGITTAIRE SAGITTAIRE	0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	10.5	mag_surf 7.4 7.4 7.5 7.7 7.7 7.7 7.81 7.85 7.85 * * 8.1 8.16 8.2 8.2 8.2 8.2 8.3 8.41 8.5 8.52 8.54 8.6 8.7 8.7 8.87	visibilite 3
	33 NGC 5873 LOUP 0.1												1.2 0 0.1 0 0.1 0 0.3 0 0.5 0 0.6 1.4	0.2 12.6 0.5 12.8 0.1 12.4 0.1 12.5 0.3 12 0.4 12.8 0.3 13 1 9.4 0.1 13	9.1 9.2 9.2 9.2 9.3 9.3	4 Nébuleuse 3 4 4 3 L'oeil étine 4 4 4 2 Nébuleuse						
12.5517 82.5667 IC 3568 7.48667 20.9167 NGC 2392 18.765 -14.4667 PK 19-5.1 0.311667 53.8833 PK 118-8.1 17.6483 -18.3 PK 84-6.1 19.58 30.5167 PK 64+5.1 5.09333 10.7 PK 190-17.7	OPHIUCHUS CYGNE	0.3 0.3 0.8 0.7 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1	https:		w.webastro.ne	net/pdf/Proto_ et/forums/topi	c/14344	2-liste-de	e-galaxie	es-brill	lantes-i	magerie-	-ou-visu/		10.U33	-61.4	IV 40/3	GLE DUPE GITTAIRE GLE GITTAIRE PHIUCHUS GNE SAGITTAIRE	0.3 0 0 0.6 0 0.2 0 0.4 0	0.3 12.6 0.2 13 0 12.7 0.5 13 0.2 12.9 0.3 12.3 0.2 13	9.4 9.43 9.6 9.6 9.8 9.86 9.9	4 4 4 Le pâté er 4 3
19.7467 50.5333 NGC 6826 19.4517 -6.58333 NGC 6741 19.0433 -0.45 NGC 6741 19.7333 -14.15 NGC 6818 16.5517 0.283333 PK 13+32.1 18.4867 -31.5 PK 2-9.1 18.1933 -28.3667 PK 3-4.7 3.7933 35.05 C.351 NGC 6879 17.805 -16.4667 NGC 6639 17.9833 -15.5333 PK 13+4.1 0.216667 72.5167 NGC 40 18.2433 -28.8167 PK 2-5.1 17.0383 -33.1667 PK 2-51.5 17.0383 -33.1667 PK 2-51.5 17.0383 -33.1667 PK 351+5.1 17.0383 -33.1667 PK 351+5.1 -3.58626 PK 351+5	CYGNE AIGLE AIGLE SAGITTAIRE SERPENT SAGITTAIRE ERIDAN SAGITTAIRE SAGITTAIRE PERSEE FLECHE SAGITTAIRE SERPENT CEPHEE SAGITTAIRE SCORPION	0.4 0.4 0.4 0.3 0.2 0.1 0.3 0.3 0.3 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.1 0.3 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.3 0.1 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4 8.8 1 12.4 1 12.8 3 10 1 12.8 1 11.9 3 10.4 1 13.9 2 11 1 12.4 1 13 1 13 7 10.7 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 1	6.9 6.96 7.14 7.2 7.2 7.25 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	2 Blinking Nebula 3 Phantom Streak Nebu 2 Le Joyau 3 L'Oeil de Cléopâtre 3 "Citron bleu" 3 "Noeud papillon 3 3	2 2 2 1 1 1 1 7 1 1 1 1	0.3733 20 2.6717 61.28 3.7283 -13. 18.2 -33.86 17.77 -18.66 5.32 38.18 1.705 51.58	0.1 NGC 6905 33 NGC 7354 57 PK 19-4.1 67 NGC 6563 67 PK 8+ 5.1 30 PK 169-0.1 31 PK 169-0.1 32 NGC 6369 33 NGC 2371 34 NGC 6058 74 NGC 6058 75 PK 6+ 2.5 76 PK 6+ 2.5 77 PK 355+ 3.2	DAUPHIN CEPHEE ECU SAGITTAIRE OPHIUCHUS COCHER PERSEE SAGITTAIRE OPHIUCHUS GEMEAUX HERCULE SAGITTAIRE SCORPION	0.7 0.4 0 0.9 0.3 0.5 2.7 0.1 0.5 1.2 0.4 0.4 0.2 0.7	0.6 12 0.3 12.9 0 7 13 0.3 13 0.5 12 1.8 11 0.1 12 0.5 11 0.9 13 0.3 13 0.4 13 0.4 13 0.2 10 0.6 12.2	10 10.1 10.2 10.3 10.35 10.37 10.4 10.5 10.5 10.5 10.8 10.84 11 11	3 Le bonbon e 4 3 4 4 3 Petit haltère 4 Peanut Nebi 5 5 3	e ne	20.3733 22.6717 18.7283 18.2 17.77 5.32 1.705 17.9383 17.4883 7.42667 16.0733 17.8783 23.5317	20.1 61.2833 -13.75 -33.8667 -18.6667 38.1833 51.5833 -16.5 -23.7667 29.4833 40.6833 -22.3667 -30.35	NGC 6905 NGC 7354 PK 19- 4.1 NGC 6563 PK 8+ 5.1 PK 169-0.1 M 76 PK 11+ 4.1 NGC 6369 NGC 2371 NGC 6058 PK 6+ 2.5 PK 355+ 3.2 PK 116+ 8.1	DAUPHIN CEPHEE ECU SAGITTAIRE OPHIUCHUS COCHER PERSEE SAGITTAIRE OPHIUCHUS GEMEAUX HERCULE SAGITTAIRE SCORPION	0.7 0.4 0.0 0.9 0.3 0.5 0.1 0.5 0.1 0.5 0.4 0.4 0.4 0.4 0.2 0.2 0.5 0.2 0.4 0.4 0.4 0.2 0.2 0.5 0.2 0.4 0.4 0.4 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	12.2 13.3 12.9 0 12.3 13.0 13.1 13.1 13.1 12.1 12.1 12.1 13.1 13.1	10 10.1 10.2 10.3 10.35 10.37 10.4 10.5 10.5 10.5 10.8 10.84	4 A Petit haltů 4 Petit haltů 5 Peanut Ne 5 5 5 3
19.0933 -33.2 PK 3-17.1 3.94 33.8833 IC 2003	SAGITTAIRE PERSEE	0.1 0.1 Page 1		7.4	3					Page 2									Page 2			

L'acquisition

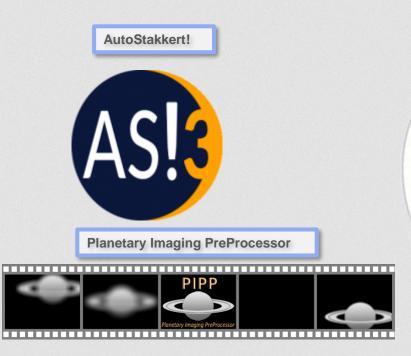
Quels instruments?

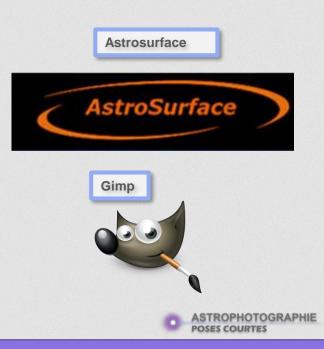

Le bénéfice des poses courtes se fera sentir sur toutes sortes d'instruments. Seulement sur les petits diametres (<120mm) l'interet se portera plus sur la capture qui devient plus simple. Et des que le diamètre augmente ,plus il est facile d'aller dans la HR avec en contre partie un tri plus important ce qui fait perdre de la detection. Rester coherent avec son echantillonnage est un bon compromis.

L'acquisition

BRUIT DE LECTURE FAIBLE

GAIN ÉLEVÉ

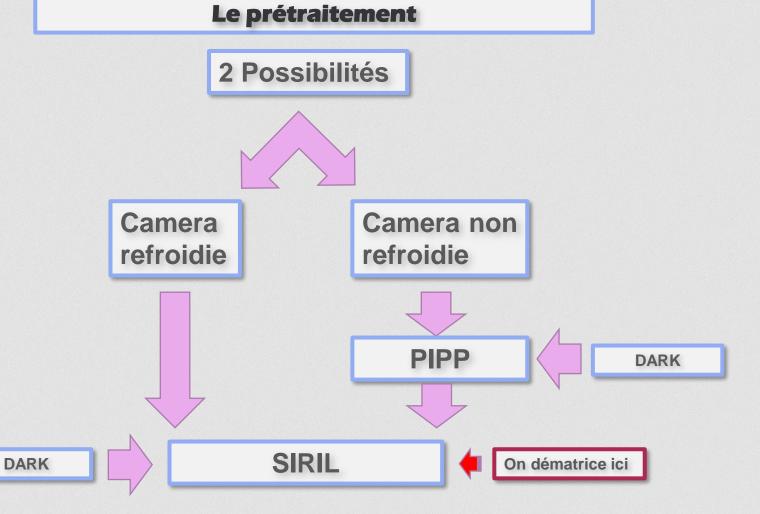

OBJETS LUMINEUX (SELON LE SETUP)

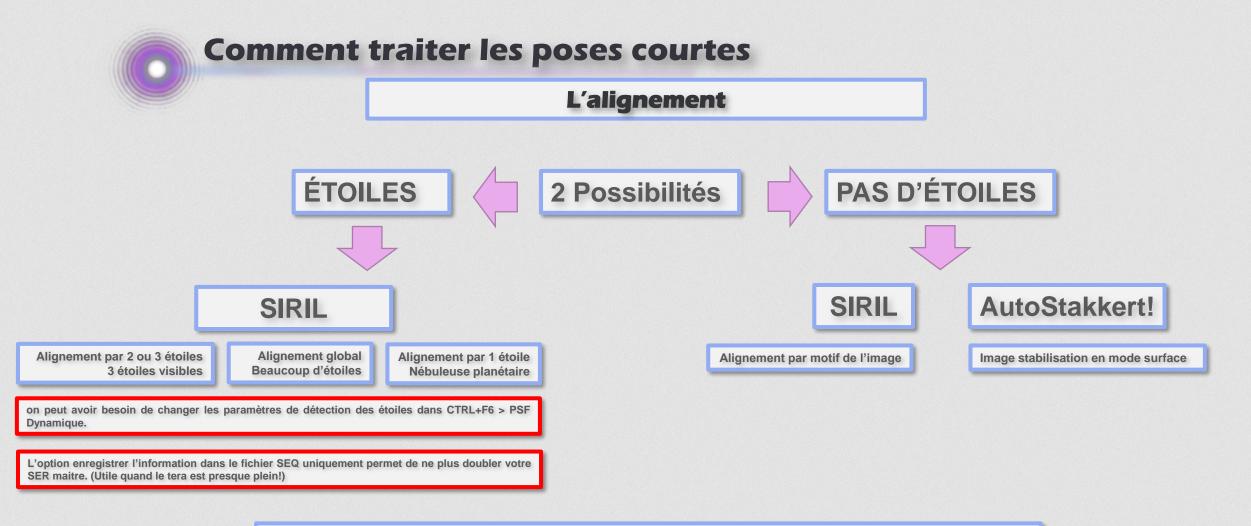


Les logiciels

J'ai sélectionné des logiciels qui me semblent importants pour cette technique:

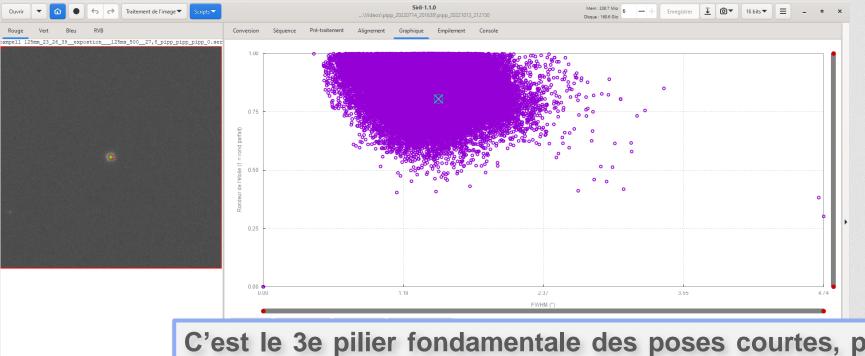






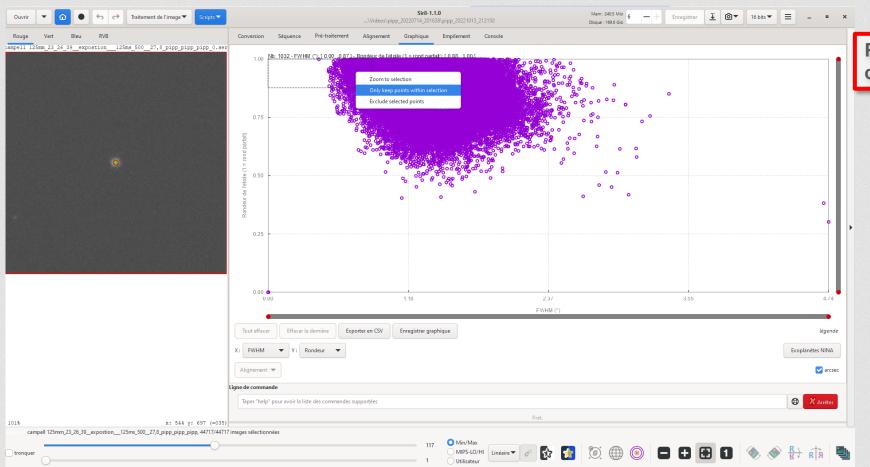
La fonction correction cosmétique peut s'appliquer sur des séquences SER, si vous n'avez pas de Dark cette fonction peut permettre de faciliter le traitement finale.

Il est mieux de ne pas appliquer de Dark que des Darks automatiques à la mauvaises températures.



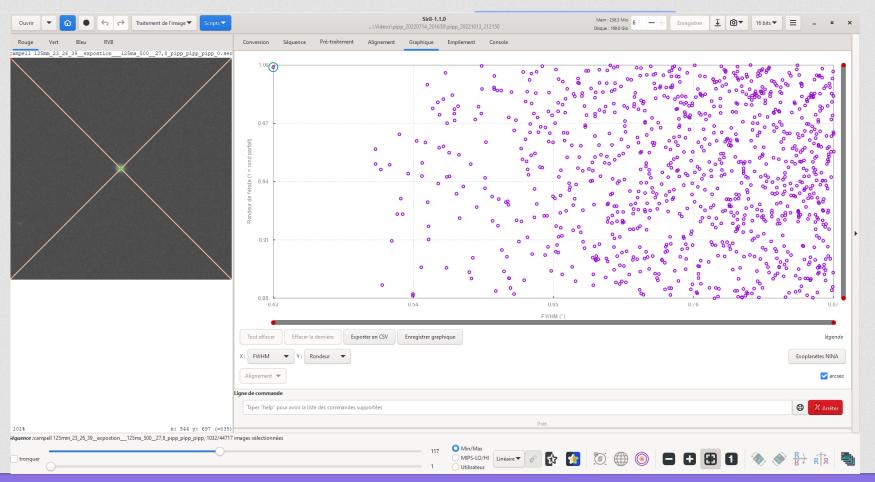
C'est un des piliers fondamentaux des poses courtes, plus l'alignement est précis plus votre image finale sera résolue.

Le tri


Un nouvel outil apparaît dans Siril qui est, dans le cadre des poses courtes et celui du planétaire (dans un avenir proche), redoutable d'efficacité: la sélection par cadre.

C'est le 3e pilier fondamentale des poses courtes, plus le tri est rigoureux plus votre image finale sera résolue.

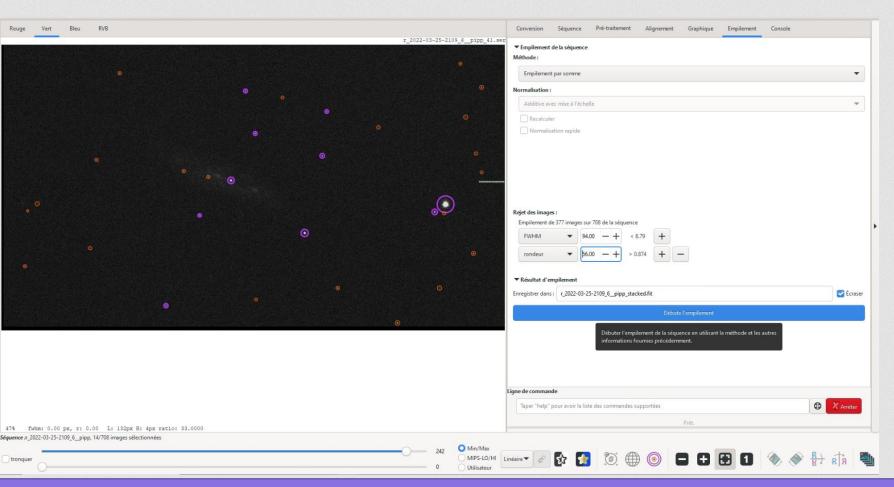
Le tri



Plus votre exposition est courte plus le tri sera sévère.

On choisi les représentants des X et des Y puis avec la souris on encadre notre sélection (rondeur et FWHM)

Le tri


Le tri est important car il impacte directement la finesse de l'image finale. Aussi, il est primordial de rejeter les (mauvaises) brutes qui peuvent détériorer la qualité de celle-ci.

Comment traiter les poses courtes

L'empilement

Après avoir aligné les images du fichier SER, vient le temps de les empiler. L'utilisation de la méthode Somme est essentielle si on a travaillé en 8 bits .De plus ce mode est beaucoup plus rapide .

Pourquoi utiliser les poses courtes.

Trier

ALIGNER

HAUTE RESOLUTION

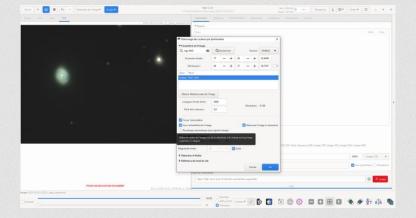
Comment traiter les poses courtes

Le traitement final

Donner ici une méthode générale de traitement n'est pas possible, chaque objet, situation et envie peuvent influer sur le traitement et je vais me limiter de lister les grands axes que je suis lors de mes propres traitements.

Je crée 3 calques avec Gimp ou Photoshop:

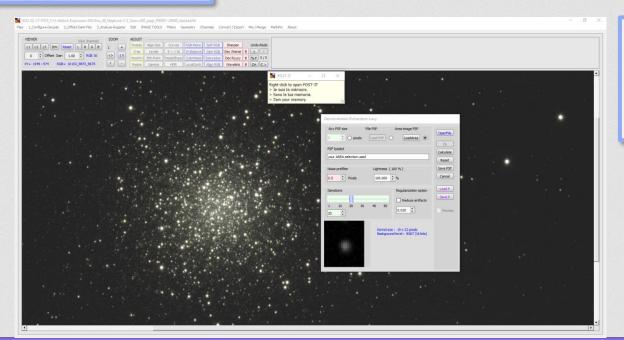
un pour la cible, un autre pour les étoiles et un pour le fond.


Chaque calque est traité séparément. Par exemple, la cible a besoin d'un traitement de déconvolution plus poussé pour faire ressortir les détails

L'image finale possède généralement un gradient de luminosité qui doit être enlevé.

Afin d'extraire ce gradient, j'utilise la fonction Extraction de gradient de SIRIL, en mode manuel.

Ensuite j'équilibre les couleurs avec l'outil Etalonnage des couleurs . J'utilise le mode étalonnage des couleurs par photométrie.



Comment traiter les poses courtes

Le traitement final

La déconvolution ou la révélation des détails pour la cible principale

La déconvolution est un processus qui permet de corriger les aberrations/distorsions optiques liées à l'utilisation d'un télescope ou d'une lunette. On obtient une image plus nette avec une amélioration du bruit de fond. La déconvolution fonctionne dans les cas où on est proche de l'échantillonnage optimal, voire sur des captures suréchantillonnées (ce qui est rare en photographie du ciel profond pose longue).

j'utilise le logiciel Astrosurface pour ce type de manipulation.

Il possède des fonctions très intéressantes pour les images en courtes poses.

Une grande souplesse dans la déconvolution et la montée du bruit.

Ceci clôt cette présentation sur les poses courtes. Cette technique facilite la capture et permet d'explorer si vous le voulez des objets qui jusqu'alors n'étaient accessibles qu'avec du matériel haut de gamme et onéreux.

Laissez-vous tenter, il y a dorénavant tant de nouvelles choses à explorer!

